DOI QR코드

DOI QR Code

Analysis of Broad-Range DNA Fragments with Yttrium Oxide or Ytterbium Oxide Nanoparticle/Polymer Sieving Matrix Using High-Performance Capillary Electrophoresis

  • Published : 2009.02.20

Abstract

We have developed the yttrium oxide (YNP) or ytterbium oxide (YbNP) nanoparticle/polymer matrices for the size-dependent separation of DNA ranging from 100 bp to 9,000 bp. High separation efficiency (> $10^6$ plates/m) and the baseline resolution for various DNA standards (100 bp, 500 bp, and 1 kbp DNA ladder) were obtained in 10 min with these matrices. The effects of concentrations of both polyethylene oxide (PEO) and nanoparticles were investigated and the highest performance was obtained at 0.02% PEO with 0.02% YNP or YbNP. Similar sieving power for both YNP and YbNP matrices was observed probably due to the similar sizes of nanoparticles, resulting in the formation of comparable sieving networks for DNA separation. For the reduction of electrosmotic flow, either dynamic or permanent coating of the capillary inner wall was compared and it turned out that PEO was superior to polyvinylpyrrolidone (PVP) or polyacrylamide (PAA) for better separation efficiency.

Keywords

References

  1. Kaur, M.; Zhang, Y.; Liu, W. H.; Tetradis, S.; Price, B. D.; Makrigiorgos, G. M. Mutagenesis 2002, 17, 365-374 https://doi.org/10.1093/mutage/17.5.365
  2. Leopardi, P.; Marcon, F.; Caiola, S.; Cafolla, A.; Siniscalchi, E.; Zijno, A.; Crebelli, R. Mutagenesis 2006, 21, 327-333 https://doi.org/10.1093/mutage/gel031
  3. Duan, X.; Li, Z.; He, F.; Wang, S. J. Am. Chem. Soc. 2007, 129, 4154-4155 https://doi.org/10.1021/ja070452c
  4. Choi, J. S.; Choi, M. J.; Ko, K. S.; Rhee, B. D.; Kim Pak, Y.; Bang, I. S.; Lee, M. Bull. Korean Chem. Soc. 2006, 27, 335-1340
  5. Raspaud, E.; Pitard, B.; Durand, D.; Pelta, J.; Aguerre-Chariol, O.; Byk, G.; Scherman, D.; Livolant, F. J. Phys. Chem. B 2001, 105, 5291-5297 https://doi.org/10.1021/jp004214e
  6. McCord, B. R.; McClure, D. L.; Jung, J. M. J. Chromatogr. A 1993, 652, 75-82 https://doi.org/10.1016/0021-9673(93)80647-Q
  7. Song, L.; Liu, T.; Liang, D.; Fang, D.; Chu, B. Electrophoresis 2001, 22, 3688-3698 https://doi.org/10.1002/1522-2683(200109)22:17<3688::AID-ELPS3688>3.0.CO;2-I
  8. Kwon, C.; Choi, J.; Lee, S.; Park, H.; Jung, S. Bull. Korean Chem. Soc. 2007, 28, 347-350 https://doi.org/10.5012/bkcs.2007.28.2.347
  9. Lee, D. H.; Kwon, S. H.; Kim, S. H.; Lee, S. H.; Min, B. Bull. Korean Chem. Soc. 2007, 28, 59-62 https://doi.org/10.5012/bkcs.2007.28.1.059
  10. Tan, H.; Yeung, E. S. Anal. Chem. 1998, 70, 4044-4053 https://doi.org/10.1021/ac980406i
  11. Emrich, C. A.; Tian, H.; Medintz, I. L.; Mathies, R. A. Anal. Chem. 2002, 74, 5076-5083 https://doi.org/10.1021/ac020236g
  12. Ueno, K.; Yeung, E. S. Anal. Chem. 1994, 66, 1424-1431 https://doi.org/10.1021/ac00081a010
  13. Bashkin, J.; Marsh, M.; Barker, D.; Johnston, R. Appl. Theor. Electrophor. 1996, 6, 23
  14. Baba, Y.; Ishimaru, N.; Samata, K.; Tsuhako, M. J. Chromatogr. A 1993, 653, 329-335 https://doi.org/10.1016/0021-9673(93)83191-T
  15. Goetzinger, W.; Kotler, L.; Carrilho, E.; Ruiz-Martinez, M. C.; Salas-Solano, O.; Karger, B. L. Electrophoresis 1998, 19, 242-248 https://doi.org/10.1002/elps.1150190217
  16. Fung, E. N.; Yeung, E. S. Anal. Chem. 1995, 67, 1913-1919 https://doi.org/10.1021/ac00109a002
  17. Gao, Q.; Yeung, E. S. Anal. Chem. 2000, 72, 2499-2506 https://doi.org/10.1021/ac991362w
  18. Schmalzing, D.; Piggee, C. A.; Foret, F.; Carrilho, E.; Karger, B. L. J. Chromatogr. A. 1993, 652, 149-159 https://doi.org/10.1016/0021-9673(93)80655-R
  19. Zhou, D.; Wang, Y.; Zhang, W.; Yang, R.; Shi, R. Electrophoresis 2007, 28, 1072-1080 https://doi.org/10.1002/elps.200600488
  20. Zhou, P.; Yu, S.; Liu, Z.; Hu, J.; Deng, Y. J. Chromatogr. A 2005, 1083, 173-178 https://doi.org/10.1016/j.chroma.2005.05.096
  21. Chiou, S. H.; Huang, M. F.; Chang, H. T. Electrophoresis 2004, 25, 2186-2192 https://doi.org/10.1002/elps.200405977
  22. Hjerten, S. J. Chromatogr. A 1985, 347, 191-198 https://doi.org/10.1016/S0021-9673(01)95485-8
  23. Huang, M. F.; Kuo, Y. C.; Huang, C. C.; Chang, H. T. Anal. Chem. 2004, 76, 192-196 https://doi.org/10.1021/ac034908u
  24. Chiesl, T. N.; Forster, R. E.; Root, B. E.; Larkin, M.; Barron, A. E. Anal. Chem. 2007, 79, 7740-7747 https://doi.org/10.1021/ac071160x
  25. Tsagaropoulos, G.; Eisenberg, A. Macromole. 1995, 28, 6067-6077 https://doi.org/10.1021/ma00122a011
  26. Rashid, Md. H.; Bhattacharjee, R. R.; Mandal, T. K. J. Phys. Chem. C 2007, 111, 9684-9693 https://doi.org/10.1021/jp070237i
  27. Back, S. K.; Kang, C.; Kim, Y. Bull. Korean Chem. Soc. 2006, 27, 133-136 https://doi.org/10.5012/bkcs.2006.27.1.133
  28. Kim, Y. H.; Lee, D. K.; Cha, H. G.; Kim, C. W.; Kang, Y. C.; Kang, Y. S. J. Phys. Chem. B 2006, 110, 24923-24928 https://doi.org/10.1021/jp0656779

Cited by

  1. CE and nanomaterials - Part II: Nanomaterials in CE vol.38, pp.19, 2017, https://doi.org/10.1002/elps.201700098
  2. Green Synthesis of Silver Nanoparticles by Sinorhizobial Octasaccharide Isolated from Sinorhizobium meliloti vol.30, pp.7, 2009, https://doi.org/10.5012/bkcs.2009.30.7.1651
  3. Effect of Nanoparticles in Protein Separation by Capillary Electrophoresis vol.31, pp.2, 2009, https://doi.org/10.5012/bkcs.2010.31.02.479