DOI QR코드

DOI QR Code

α-Pyrones and Yellow Pigments from the Sponge-Derived Fungus Paecilomyces lilacinus

  • Elbandy, Mohamed (College of Pharmacy, Pusan National University,Department of Food Sciences and Technology, Faculty of Environmental Agricultural Sciences, Suez Canal University) ;
  • Shinde, Pramod B. (College of Pharmacy, Pusan National University) ;
  • Hong, Jong-Ki (College of Pharmacy, Kyung Hee University) ;
  • Bae, Kyung-Sook (Korea Research Institute of Chemical Technology) ;
  • Kim, Mi-Ae (College of Pharmacy, Pusan National University) ;
  • Lee, Sang-Mong (College of Natural Resources and Life Science, Pusan National University) ;
  • Jung, Jee H. (College of Pharmacy, Pusan National University)
  • Published : 2009.01.20

Abstract

New $\alpha$-pyrones (1 and 2) and cyclohexenones (13 and 14) were isolated along with known analogues (3, 5−12) from the ethyl acetate extract of the whole broth of the fungus Paecilomyces lilacinus, a strain derived from a marine sponge Petrosia sp. Their structures were established by interpretation of 1D and 2D NMR, and FABMS data. It is interesting to isolate cyclohexenone derivatives from the genus Paecilomyces (family Trichocomaceae, order Eurotiales), since these cyclohexenones were previously reported only from far distinct genera, Phoma and Alternaria (family Pleosporaceae, order Pleosporales). Compounds 6, 7, and 9 were evaluated for cytotoxicity against a small panel of human solid tumor cell lines. Their cytotoxicity was insignificant upto a concentration of 30 ${\mu}g/mL$.

Keywords

References

  1. Pietra, F. Nat. Prod. Rep. 1997, 14, 453 https://doi.org/10.1039/np9971400453
  2. Saleem, M.; Ali, M. S.; Hussain, S.; Jabbar, A.; Ashraf, M.; Lee, Y. S. Nat. Prod. Rep. 2007, 24, 1142 https://doi.org/10.1039/b607254m
  3. Bugni, T. S.; Ireland, C. M. Nat. Prod. Rep. 2004, 21, 143 https://doi.org/10.1039/b301926h
  4. Mountfort, D. O.; Rhodes, L. L. Appl. Environm. Microbiol. 1991, 57, 1963
  5. Sarkar, J. M. Biotech. Lett. 1986, 8, 769 https://doi.org/10.1007/BF01020819
  6. Isogai, A.; Suzuki, A.; Higashikawa, S.; Kuyama, S.; Tamura, S. Agric. Biol. Chem. 1980, 44, 3033 https://doi.org/10.1271/bbb1961.44.3033
  7. Mori, Y.; Tsuboi, M.; Suzuki, M.; Fukushima, K.; Arai, T. J. Antibiotic. 1982, 35, 543 https://doi.org/10.7164/antibiotics.35.543
  8. Pedras, M. S. C.; Morales, V. M.; Taylor, J. L. Phytochemistry 1994, 36, 1315 https://doi.org/10.1016/S0031-9422(00)89658-2
  9. Osterhage, C.; Kaminsky, R.; Konig, G. M.; Wright, A. D. J. Org. Chem. 2000, 65, 6412 https://doi.org/10.1021/jo000307g
  10. Appendino, G.; Ottino, M.; Marquez, N.; Bianchi, F.; Giana, A.; Ballero, M.; Sterner, O.; Fiebich, B. L.; Munoz, E. J. Nat. Prod. 2007, 70, 608 https://doi.org/10.1021/np060581r
  11. Seibert, S. F.; Eguereva, E.; Krick, A.; Kehraus, S.; Voloshina, E.; Raabe, G.; Fleischhauer, J.; Leistner, E.; Wiese, M.; Prinz, H.; Alexandrov, K.; Janning, P.; Waldmann, H.; Konig, G. M. Org. Biomol. Chem. 2006, 4, 2233 https://doi.org/10.1039/b601386d
  12. Pedras, M. S. C.; Chumala, P. B. Phytochemistry 2005, 66, 81 https://doi.org/10.1016/j.phytochem.2004.10.011
  13. Shiomi, K.; Hatae, K.; Yamaguchi, Y.; Masuma, R.; Tomoda, H.; Kobayashi, S.; Omura, S. J. Antibiot. 2002, 55, 952 https://doi.org/10.7164/antibiotics.55.952
  14. Parrish, F. W.; Wiley, B. J.; Simmons, E. G.; Long, L., Jr. Appl. Microbiol. 1966, 14, 139
  15. Li, X.; Jeong, J. H.; Lee, K. T.; Pho, J. R.; Choi, H. D.; Kang, J. S.; Son, B. W. Arch. Pharm. Res. 2003, 27, 532
  16. Pedras, M. S. C.; Morales, V. M.; Taylor, J. L. Tetrahedron 1993, 49, 8317 https://doi.org/10.1016/S0040-4020(01)81915-3
  17. Pedras, M. S. C. Can. J. Chem. 1996, 74, 1597 https://doi.org/10.1139/v96-176
  18. Soga, O.; Iwamoto, H.; Hata, K.; Maeba, R.; Takuwa, A.; Fujiwara, T.; Hsu, Y. H.; Nakayama, M. Agric. Biol. Chem. 1988, 52, 865 https://doi.org/10.1271/bbb1961.52.865
  19. Pedras, M. S. C.; Taylor, J. L.; Morales, V. M. Phytochemistry 1995, 38, 1215 https://doi.org/10.1016/0031-9422(94)00759-M
  20. Omolo, J. O.; Anke, H.; Chhabra, S.; Sterner, O. J. Nat. Prod. 2000, 63, 975 https://doi.org/10.1021/np990509b
  21. Soga, O.; Iwamoto, H.; Takuwa, A.; Nozaki, H.; Kuramoto, J.; Nakayama, M. Agric. Biol. Chem. 1987, 51, 283 https://doi.org/10.1271/bbb1961.51.283
  22. Soga, O.; Iwamoto, H.; Ota, Y.; Odoi, M.; Saito, K.; Takuwa, A.; Nakayama, M. Chem. Lett. 1987, 51, 815
  23. Wen, L.; Lin, Y. C.; She, Z. G.; Du, D. S.; Chan, W. L.; Zheng, Z. H. J. Asian Nat. Prod. Res. 2008, 10, 133 https://doi.org/10.1080/10286020701273783
  24. Guo, Z.; She, Z.; Shao, C.; Wen, L.; Fan, Z.; Lin, Y. Mag. Res. Chem. 2007, 45, 777 https://doi.org/10.1002/mrc.2035
  25. Isaka, M.; Palasarn, S.; Lapanun, S.; Sriklung, K. J. Nat. Prod. 2007, 70, 675. https://doi.org/10.1021/np060602h
  26. Cheng, Y.; Schneider, B.; Riese, U.; Schubert, B.; Li, Z.; Hamburger, M. J. Nat. Prod. 2006, 69, 436 https://doi.org/10.1021/np050418g
  27. Kikuchi, H.; Miyagawa, Y.; Nakamura, K.; Sahasi, Y.; Inatomi, S.; Oshima, Y. Org. Lett. 2004, 6, 4531 https://doi.org/10.1021/ol048141j
  28. Rahbk, L.; Sperry, S.; Piper, J. E.; Crews, P. J. Nat. Prod. 1998, 61, 1571 https://doi.org/10.1021/np980230f
  29. Fredenhagen, A.; Hug, P.; Sauter, H.; Peter, H. H. J. Antibiot. 1995, 48, 199 https://doi.org/10.7164/antibiotics.48.199
  30. Meyer, B. N.; Ferrigni, N. R.; Putnam, J. E.; Jacobsen, D. E.; McLaughlin, J. L. Planta Med. 1982, 45, 31 https://doi.org/10.1055/s-2007-971236

Cited by

  1. Marine natural products vol.28, pp.2, 2011, https://doi.org/10.1039/C005001F
  2. Secondary metabolites of fungi from marine habitats vol.28, pp.2, 2011, https://doi.org/10.1039/c0np00061b
  3. Melanin pigments in the fungus Paecilomyces lilacinus (thom) samson vol.437, pp.1, 2011, https://doi.org/10.1134/S1607672911020086
  4. Chemical components and bioactivity of the marine-derived fungus Paecilomyces sp. Collected from Tinggi Island, Malaysia vol.49, pp.4, 2013, https://doi.org/10.1007/s10600-013-0693-y
  5. vol.9, pp.17, 2017, https://doi.org/10.4155/fmc-2017-0116
  6. Pyrones as bacterial signaling molecules vol.9, pp.9, 2013, https://doi.org/10.1038/nchembio.1295
  7. Suppression of RANKL-Induced Osteoclastogenesis by the Metabolites from the Marine Fungus Aspergillus flocculosus Isolated from a Sponge Stylissa sp. vol.16, pp.1, 2018, https://doi.org/10.3390/md16010014
  8. ChemInform Abstract: α-Pyrones and Yellow Pigments from the Sponge-Derived Fungus Paecilomyces lilacinus vol.40, pp.29, 2009, https://doi.org/10.1002/chin.200929198
  9. Whitmanoside A, a New α-Pyrone Glycoside from the Leech Whitmania pigra vol.87, pp.7, 2013, https://doi.org/10.3987/com-13-12722
  10. New α-pyrone and phthalide from the Xylariaceae fungus vol.17, pp.7, 2009, https://doi.org/10.1080/10286020.2015.1054816
  11. Literature search and data collection on RA for human health for microorganisms used as plant protection products vol.12, pp.4, 2009, https://doi.org/10.2903/sp.efsa.2015.en-801
  12. Pyrone-derived Marine Natural Products: A Review on Isolation, Bio-activities and Synthesis vol.24, pp.None, 2020, https://doi.org/10.2174/1385272824666200217101400
  13. Insight into Antioxidant and Photoprotective Properties of Natural Compounds from Marine Fungus vol.60, pp.3, 2009, https://doi.org/10.1021/acs.jcim.9b00964
  14. Fungi and Arsenic: Tolerance and Bioaccumulation by Soil Saprotrophic Species vol.10, pp.9, 2009, https://doi.org/10.3390/app10093218
  15. A Systematic Review on Secondary Metabolites of Paecilomyces Species: Chemical Diversity and Biological Activity vol.86, pp.12, 2009, https://doi.org/10.1055/a-1196-1906
  16. New pyrone and cyclopentenone derivatives from marine-derived fungus Aspergillus sydowii SCSIO 00305 vol.35, pp.2, 2021, https://doi.org/10.1080/14786419.2019.1629919
  17. Secondary Metabolites of Purpureocillium lilacinum vol.27, pp.1, 2009, https://doi.org/10.3390/molecules27010018