DOI QR코드

DOI QR Code

Cloning, Expression, and Characterization of UDP-glucose Pyrophosphorylase from Sphingomonas chungbukensis DJ77

  • Yoon, Moon-Young (Department of Chemistry, Research Institute for Natural Sciences, Hanyang University) ;
  • Lee, Kyoung-Jin (Department of Chemistry, Research Institute for Natural Sciences, Hanyang University) ;
  • Park, Hea-Chul (Department of Chemistry, Research Institute for Natural Sciences, Hanyang University) ;
  • Park, Sung-Ha (Department of Biochemistry, Chungbuk National University) ;
  • Kim, Sang-Gon (Department of Chemistry and Biochemistry and Institute of Biomedical Studies, Baylor University) ;
  • Kim, Sung-Kun (Department of Chemistry and Biochemistry and Institute of Biomedical Studies, Baylor University) ;
  • Choi, Jung-Do (Department of Biochemistry, Chungbuk National University)
  • Published : 2009.06.20

Abstract

The bacterium Sphingomonas chungbukensis DJ77 produces the extracellular polysaccharide gellan in high yield. Gellan produced by this bacterium is widely used as a gelling agent, and the enzyme UDP-glucose pyrophosphorylase (UGP) is thought to play a key role in the gellan biosynthetic pathway. The UGP gene has been successfully cloned and over-expressed in E. coli. The expressed enzyme was purified with a molecular weight of approximately 32 kDa, as determined by a SDS-polyacrylamide gel, but the enzyme appears as ca. 63 kDa on a native gel, suggesting that the enzyme is present in a homodimer. Kinetic analysis of UDP-glucose for UGP indicates $K_m$ = 1.14 mM and $V_{max}$ = 10.09 mM/min/mg at pH 8.0, which was determined to be the optimal pH for UGP catalytic activity. Amino acid sequence alignment against other bacteria suggests that the UGP contains two conserved domains: An activator binding site and a glucose-1-phosphate binding site. Site-directed mutagenesis of Lys194, located within the glucose-1-phosphate binding site, indicates that substitution of the charge-reversible residue Asp for Lys194 dramatically impairs the UGP activity, supporting the hypothesis that Lys194 plays a critical role in the catalysis.

Keywords

References

  1. Kim, C. K.; Kim, J. W.; Kim, Y. C.; Mheen, T. I. Kor. J. Microbiol. 1986, 24, 67.
  2. Kim, S. J.; Chun, J.; Bae, K. S.; Kim, Y. C. Int. J. Syst. Evol. Microbiol. 2000, 50, 1641. https://doi.org/10.1099/00207713-50-4-1641
  3. Sutherland, I. W. Trends Biotechnol. 1998, 16, 41. https://doi.org/10.1016/S0167-7799(97)01139-6
  4. Kuo, C. C.; Chen, H. H.; Wang, S. P.; Grayston, J. T. J. Clin. Microbiol. 1986, 24, 1034.
  5. Martins, L. O.; Sa-Correia, I. Biotechnol. Appl. Biochem. 1991, 14, 357.
  6. Sa-Correia, I.; Fialho, A. M.; Videira, P.; Moreira, L. M.; Marques, A. R.; Albano, H. J. Ind. Microbiol. Biotechnol. 2002, 29, 170. https://doi.org/10.1038/sj.jim.7000266
  7. Frey, P. A. FASEB J. 1996, 10, 461.
  8. Sundararajan, T. A.; Rapin, A. M.; Kalckar, H. M. Proc. Natl. Acd. Sci. USA 1962, 48, 2187. https://doi.org/10.1073/pnas.48.12.2187
  9. Daran, J. M.; Dallies, N.; Thines-Sempoux, D.; Paquet, V.; Francois, J. Eur. J. Biochem. 1995, 233, 520. https://doi.org/10.1111/j.1432-1033.1995.520_2.x
  10. Eimert, K.; Villand, P.; Kilian, A.; Kleczkowski, L. A. Gene 1996, 170, 227. https://doi.org/10.1016/0378-1119(95)00873-X
  11. Marques, A. R.; Ferreira, P. B.; Sa-Correia, I.; Fialho, A. M. Mol. Genet. Genomics 2003, 268, 816.
  12. Kim, U. J.; Shizuya, H.; de Jong, P. J.; Birren, B.; Simon, M. I. Nucleic Acids Res. 1992, 20, 1083. https://doi.org/10.1093/nar/20.5.1083
  13. Kim, C. G.; Fujiyama, A.; Saitou, N. Genomics 2003, 82, 571. https://doi.org/10.1016/S0888-7543(03)00174-5
  14. Laemmli, U. K. Nature 1970, 227, 680. https://doi.org/10.1038/227680a0
  15. Bradford, M. M. Anal. Biochem. 1976, 72, 248. https://doi.org/10.1016/0003-2697(76)90527-3
  16. Bernstein, R. L.; Robbins, P. W. J. Biol. Chem. 1965, 240, 391.
  17. Richau, J. A.; Leitao, J. H.; Sa-Correia, I. Biochem. Biophys. Res. Commun. 2000, 276, 71. https://doi.org/10.1006/bbrc.2000.3438
  18. Lee, L.; Kimura, A.; Tochikura, T. J. Biochem. 1979, 86, 923.
  19. Wei, C. L.; Lin, N. T.; Weng, S. F.; Tseng, Y. H. Biochem. Biophys. Res. Commun. 1996, 226, 607. https://doi.org/10.1006/bbrc.1996.1403
  20. Turner, W.; Botha, F. C. Arch. Biochem. Biophys. 2002, 407, 209. https://doi.org/10.1016/S0003-9861(02)00500-3
  21. Ke, S. H.; Madison, E. L. Nucleic Acids Res. 1997, 25, 3371. https://doi.org/10.1093/nar/25.16.3371
  22. Thorson, J. S.; Kelly, T. M.; Liu, H. W. J. Bacteriol. 1994, 176, 1840.
  23. Brown, K.; Pompeo, F.; Dixon, S.; Mengin-Lecreulx, D.; Cambillau, C.; Bourne, Y. EMBO J. 1999, 18, 4096. https://doi.org/10.1093/emboj/18.15.4096
  24. Koo, H. M.; VanBrocklin, M.; McWilliams, M. J.; Leppla, S. H.; Duesbery, N. S.; Woude, G. F. Proc. Natl. Acad. Sci. USA 2002, 99, 3052. https://doi.org/10.1073/pnas.052707699

Cited by

  1. Characterization of Two Site-Specifically Modified Human Dihydrolipoamide Dehydrogenase Mutants (Pro-282 to Ala and Pro-298 to Ala) vol.33, pp.4, 2012, https://doi.org/10.5012/bkcs.2012.33.4.1119
  2. Characterization of a Naturally Occurring Mutation (Ile-358 to Thr) in Human Dihydrolipoamide Dehydrogenase of a Patient with Leigh Syndrome vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1445
  3. Characterization of Two Site-specific Mutations in Human Dihydrolipoamide Dehydrogenase vol.34, pp.6, 2013, https://doi.org/10.5012/bkcs.2013.34.6.1621
  4. Characterization of Two Site-Specific Human Cytosolic Thioredoxin Mutants (Pro-34 to Ala and Val) vol.30, pp.12, 2009, https://doi.org/10.5012/bkcs.2009.30.12.2869
  5. Cloning and characterization of phosphomannose isomerase from sphingomonas chungbukensis DJ77 vol.42, pp.8, 2009, https://doi.org/10.5483/bmbrep.2009.42.8.523
  6. Characterization of Human Cytosolic Thioredoxin Reductase by Site-specific Mutagenesis vol.31, pp.12, 2010, https://doi.org/10.5012/bkcs.2010.31.12.3515
  7. Characterization of Three Site-specific Mutations in Human Dihydrolipoamide Dehydrogenase (Gly-42 to Ala, Gly-43 to Ala and Val-48 to Trp) vol.32, pp.12, 2009, https://doi.org/10.5012/bkcs.2011.32.12.4427
  8. Characterization of Two Naturally Occurring Mutations (Gly-101 Deletion and Glu-340 to Lys Substitution) in Human Dihydrolipoamide Dehydrogenase of a Patient with Metabolic Acidosis vol.33, pp.8, 2012, https://doi.org/10.5012/bkcs.2012.33.8.2477
  9. Characterization of Human Cytosolic Thioredoxin Mutants with Increasing Side Chain Volumes at Residue-33 vol.33, pp.10, 2009, https://doi.org/10.5012/bkcs.2012.33.10.3169
  10. The radical-SAM enzyme Viperin catalyzes reductive addition of a 5′-deoxyadenosyl radical to UDP-glucose in vitro vol.591, pp.16, 2009, https://doi.org/10.1002/1873-3468.12769