DOI QR코드

DOI QR Code

Culturing of Rat Intestinal Epithelial Cells-18 on Plasma Polymerized Ethylenediamine Films Deposited by Plasma Enhanced Chemical Vapor Deposition

  • Choi, Chang-Rok (Department of Physics, Brain Korea 21 Physics Research Division and Institute of Basic Science, Sungkyunkwan University) ;
  • Kim, Kyung-Seop (Department of Physics, Brain Korea 21 Physics Research Division and Institute of Basic Science, Sungkyunkwan University) ;
  • Kim, Hong-Ja (Department of Internal Medicine, Dankook Univeristy College of Medicine) ;
  • Park, Heon-Yong (Department of Molecular Biology & Institute of Nanosensor and Biotechnology, BK21 Graduate Program for RNA Biology, Dankook University) ;
  • Jung, Dong-Geun (Department of Physics, Brain Korea 21 Physics Research Division and Institute of Basic Science, Sungkyunkwan University) ;
  • Boo, Jin-Hyo (Department of Chemistry and Institute of Basic Science, Sungkyunkwan University)
  • Published : 2009.06.20

Abstract

Many researchers studied cell culturing on surfaces with chemical functional groups. Previously, we reported surface properties of plasma polymerized ethylenediamine (PPEDA) films deposited by plasma enhanced chemical vapor deposition with various plasma conditions. Surface properties of PPEDA films can be controlled by plasma power during deposition. In this work, to analyze correlation of cell adherence/proliferation with surface property, we cultured rat intestinal epithelial cells-18 on the PPEDA films deposited with various plasma powers. It was shown that as plasma power was decreased, density of cells cultured on the PPEDA film surface was increased. Our findings indicate that plasma power changed the amine density of the PPEDA film surface, resulting in density change of cells cultured on the PPEDA film surface.

Keywords

References

  1. Salloum, D. S.; Schlenoff, J. B. Biomacromolecules 2004, 5, 1089. https://doi.org/10.1021/bm034522t
  2. Gogolewski, S.; Mainil-Varlet, P.; Dillon, J. G. J. Biomed. Mater. Res. 1996, 32, 227. https://doi.org/10.1002/(SICI)1097-4636(199610)32:2<227::AID-JBM12>3.0.CO;2-G
  3. Favia, P.; Sardella, E.; Gristina, R.; Milella, A.; d'Agostino, R. J. Photopolym. Sci. Technol. 2002, 15, 341. https://doi.org/10.2494/photopolymer.15.341
  4. Daw, R.; Candan, S.; Beck, A. J.; Devlin, A. J.; Brook, I. M.; Macneil, S.; Dawson, R. A.; Short, R. D. Biomaterials 1998, 19, 1717. https://doi.org/10.1016/S0142-9612(98)00080-5
  5. Mrksich, M. Chem. Soc. Rev. 2000, 29, 267. https://doi.org/10.1039/a705397e
  6. Liedberg, B.; Tengvall, P. Langmuir 1995, 11, 3821. https://doi.org/10.1021/la00010a037
  7. Isacc, S. C.; Stacey, A. M. J. Am. Chem. Soc. 2007, 129, 4874. https://doi.org/10.1021/ja070200b
  8. Choi, C.; Kim, S. I.; Lee, S.; In, K.; Park, H.; Jung, D. J. Korean Phys. Soc. 2008, 53, 1475. https://doi.org/10.3938/jkps.53.1475
  9. Ratner, B. D.; Hoffman, A. S.; Schoen, F. J.; Lemons, J. E. In Biomaterials Science; Schoen, F. J.; Mitchell R. N., Eds.; Academic Press: New York, U.S.A., 2004; p 273.
  10. Lee, T. G.; Kim, J.; Shon, H. K.; Jung, D.; Moon, D. W. Appl. Surf. Sci. 2006, 252, 6632. https://doi.org/10.1016/j.apsusc.2006.02.214
  11. Kim, J.; Jung, D.; Park, Y.; Kim, Y.; Moon, D. W.; Lee, T. G. Appl. Surf. Sci. 2007, 253, 4112. https://doi.org/10.1016/j.apsusc.2006.09.011
  12. Oh, S. J.; Cho, S. J.; Kim, C. O.; Park, J. W. Langmuir 2002, 18, 1764. https://doi.org/10.1021/la0113522
  13. Kim, J.; Park, H.; Jung, D.; Kim, S. Anal. Biochem. 2003, 313, 41. https://doi.org/10.1016/S0003-2697(02)00563-8