DOI QR코드

DOI QR Code

Iron-loaded Natural Clay as Heterogeneous Catalyst for Fenton-like Discoloration of Dyeing Wastewater

  • Xu, Huan-Yan (College of Materials Science and Engineering, Harbin University of Science and Technology) ;
  • Ha, Xiu-Lan (College of Materials Science and Engineering, Harbin University of Science and Technology) ;
  • Wu, Ze (College of Materials Science and Engineering, Harbin University of Science and Technology) ;
  • Shan, Lian-Wei (College of Materials Science and Engineering, Harbin University of Science and Technology) ;
  • Zhang, Wei-Dong (College of Materials Science and Engineering, Harbin University of Science and Technology)
  • Published : 2009.10.20

Abstract

The clay-based Fe-bearing catalyst was successfully prepared through ion-exchange reaction and applied as heterogeneous catalyst for discoloration of acid fuchsine (AF) in an aqueous solution by Fenton-like reaction. Experimental results demonstrated that the AF discoloration ratios increased by increasing Fe-loaded clay dosage and initial $H_2O_2$ concentration, and by decreasing the pH, respectively. The lower the initial AF concentration, the shorter the reaction time needed to achieve complete discoloration of AF. Comparative studies indicated that AF discoloration ratios were much higher in presence of Fe-loaded clay and $H_2O_2$ than those in presence of $H_2O_2$, raw natural clay or Fe-loaded clay only and raw natural clay and $H_2O_2$ jointly. After AF discoloration, there existed no new phases in the clay samples detected by XRD and no change in the clay crystal morphology observed by SEM. A mechanism proposed suggested adsorption and Fenton-like reaction were responsible for discoloration of AF.

Keywords

References

  1. Dong, Y. M.; He, K.; Zhao, B.; Yin, Y.; Yin, L.; Zhang, A. M. Catal. Commun. 2007, 8, 1599 https://doi.org/10.1016/j.catcom.2007.01.016
  2. Vlyssides, A. G.; Papaioannou, D.; Loizidoy, M.; Karlis, P. K.; Zorpas, A. A. Waste Manage. 2000, 20, 569. https://doi.org/10.1016/S0956-053X(00)00028-3
  3. Slokar, Y. M.; Le Marechal, A. M. Dyes Pigments 1998, 37, 335. https://doi.org/10.1016/S0143-7208(97)00075-2
  4. Strickland, A. F.; Perkins, W. S. Text. Chem. Color. 1995, 27, 11.
  5. Pearce, C. I.; Lloyd, J. R.; Guthrie, J. T. Dyes Pigments 2003, 58, 179. https://doi.org/10.1016/S0143-7208(03)00064-0
  6. Carriazo, J. G.; Centeno, M. A.; Odriozola, J. A.; Moreno, S.; Molina, R. Appl. Catal. A: Gen. 2007, 317, 120 https://doi.org/10.1016/j.apcata.2006.10.009
  7. Malik, P. K. J. Phys. Chem. A 2004, 108, 2675. https://doi.org/10.1021/jp031082r
  8. Duesterberg, C. K. Waite, T. D. Environ. Sci. Technol. 2006, 40, 4189 https://doi.org/10.1021/es060311v
  9. Leung, Y. F. Ph.D. Thesis, The Hong Kong University of Science and Technology: HongKong, 2005.
  10. Huling, S. G.; Jones, P. K.; Lee, T. R. Environ. Sci. Technol. 2007, 41, 4090 https://doi.org/10.1021/es062666k
  11. Parkhomchuk, E. V.; Vanina, M. P.; Preis, S. Catal. Commun. 2008, 9, 381. https://doi.org/10.1016/j.catcom.2007.07.009
  12. Tekbaş, M.; Yatmaz, H. C.; Bektaş, N. Micropor. Mesopor. Mat. 2008, 115, 594. https://doi.org/10.1016/j.micromeso.2008.03.001
  13. Murray, H. H. Appl. Clay Sci. 2000, 17, 207. https://doi.org/10.1016/S0169-1317(00)00016-8
  14. Chen, J. X.; Zhu, L. Z. Catal. Today 2007, 126, 463. https://doi.org/10.1016/j.cattod.2007.06.022
  15. Ramirez, J. H.; Costa, C. A.; Madeira, L. M.; Mata, G.; Vicente, M. A.; Rojas-Cervantes, M. L.; López-Peinado, A. J.; Martín- Aranda, R. M. Appl. Catal. B: Environ. 2007, 71, 44. https://doi.org/10.1016/j.apcatb.2006.08.012
  16. Cheng, M. M.; Song, W. J.; Ma, W. H.; Chen, C. C.; Zhao, J. C.; Lin, J.; Zhu, H. Y. Appl. Catal. B: Environ. 2008, 77, 355. https://doi.org/10.1016/j.apcatb.2007.08.006
  17. Guo, R. F.; Liu, C. L. Contrib. Geo. Miner. Resour. Res. 2008, 23, 218. (in Chinese with English abstract).
  18. Deluca, S.; Slaughter, M. Am. Mineral. 1985, 70, 149.
  19. Aparicio, P.; Galan, E.; Ferrell, R. E. Clay Minerl. 2006, 41, 811. https://doi.org/10.1180/0009855064140220
  20. Xu, H. Y.; Prasad, M.; Liu, Y. J. Hazard. Mater. 2009, 165, 1186. https://doi.org/10.1016/j.jhazmat.2008.10.108
  21. Feng, J. Y.; Hu, X. J.; Yue, P. L. Environ. Sci. Technol. 2004, 38, 269 https://doi.org/10.1021/es034515c
  22. Feng, J. Y.; Hu, X. J.; Yue, P. L. Environ. Sci. Technol. 2004, 38, 5773. https://doi.org/10.1021/es049811j

Cited by

  1. Degradation of burazol blue ED by heterogeneous fenton process: simultaneous optimization by central composite design pp.1944-3986, 2014, https://doi.org/10.1080/19443994.2014.968630
  2. A parametric study on the decolorization and mineralization of C.I. Reactive Red 141 in water by heterogeneous Fenton-like oxidation over FeZSM-5 zeolite vol.13, pp.1, 2015, https://doi.org/10.1186/s40201-015-0162-6
  3. Elimination of the methyl blue from wastewater by advanced oxidation process in the presence of an heteropolyanion of Dawson type as a catalyst vol.41, pp.3, 2015, https://doi.org/10.1007/s11164-013-1304-z
  4. Immobilisation of Iron-Containing Materials onto Supporting Materials in Heterogeneous Fenton System: A Review vol.955-959, pp.1662-8985, 2014, https://doi.org/10.4028/www.scientific.net/AMR.955-959.569
  5. Fe-clay as effective heterogeneous Fenton catalyst for the decolorization of Reactive Blue 4 vol.171, pp.3, 2009, https://doi.org/10.1016/j.cej.2011.04.040
  6. Potential of Clay in Coal Mining of Tanjung Enim Area as a Filler on Rubber Compound vol.1167, pp.None, 2019, https://doi.org/10.1088/1742-6596/1167/1/012042
  7. Fenton-like degradation of di-n-butyl phthalate in landfill leachate by endogenous catalysts or iron, copper and manganese loaded bottom sediments vol.16, pp.None, 2021, https://doi.org/10.1016/j.enmm.2021.100551