DOI QR코드

DOI QR Code

Process Optimization for Preparing High Performance PAN-based Carbon Fibers

  • Yun, Jeong-Hyeon (Faculty of Applied Chemical Engineering and Alan G. MacDiarmid Energy Research Institute (AMERI), Chonnam National University) ;
  • Kim, Bo-Hye (Faculty of Applied Chemical Engineering and Alan G. MacDiarmid Energy Research Institute (AMERI), Chonnam National University) ;
  • Yang, Kap-Seung (Faculty of Applied Chemical Engineering and Alan G. MacDiarmid Energy Research Institute (AMERI), Chonnam National University) ;
  • Bang, Yun-Hyuk (R&D Business Labs, Hyosung Corporation) ;
  • Kim, Sung-Ryong (R&D Business Labs, Hyosung Corporation) ;
  • Woo, Hee-Gweon (Alan G. MacDiarmid Energy Research Institute (AMERI), Nanotechnology Research Center (NTRC) and Department of Chemistry, Chonnam National University)
  • Published : 2009.10.20

Abstract

wet spun polyacrylonitrile (PAN) fiber precursors. The process variables chosen were treatment temperature, applied tension in stabilization process. The temperature profile of the stabilization was set on the basis of exothermic peaks of the differential scanning calorimetry (DSC) result. Both tensile strength and modulus increased with holding at onset temperatures of the exothermic peaks for extended duration, and with a higher heating rate up to the onset temperatures at a given applied tension among the experimental conditions. The increase in load monotonously increased the tensile modulus, on the other hand, the tensile strength was maximum at the load of 15 mg/filament (T15). The load 20 mg/ filament (T20) was considered to be exceeded to form oriented crystalline structure, possibly introducing more defects in the fiber than under load of T15. The sample CP3-T15 O5 H30 showed the best tensile properties among the samples experimented whose tensile properties are compatible with the commercialized grade of general purpose carbon fibers even at low carbonization temperature such as $800\;{^{\circ}C}$ (the carbonization temperature in the commercial process. 1300∼$1500\;{^{\circ}C}$).

Keywords

References

  1. Gupta, A. K.; Paliwal, D. K.; Bajaj, P. J. Macromol. Sci., Rev. Macromol. Chem. Phys. 1991, C31, 1.
  2. Serkov, A.; Budnitskii, G.; Radishevskii, M.; Medvedev, V.; Zlatoustova, L. Fibre Chem. 2003, 35, 117. https://doi.org/10.1023/A:1024838312261
  3. Perepelkin, K. E. Fibre Chem. 2003, 35, 409. https://doi.org/10.1023/B:FICH.0000020769.42823.31
  4. Peebles, L. Carbon Fibres; CRC Press: Boca Raton, 1995; pp 7-26.
  5. Bahl, O.; Shen, Z.; Lavin, J.; Ross, R. Manufacturing of Carbon Fibres, in Carbon Fibres; Donnet, J. B.; Wang, T.; Peng, J.; Reboyillat, S., Eds.; Marcel Dekker: New York, 1998; pp 1-19.
  6. Gupta, A.; Harrison, I. R. Carbon 1996, 34, 1427. https://doi.org/10.1016/S0008-6223(96)00094-2
  7. Chung, D. L. Carbon Fiber Composites; Butterworth-Heinemann, 1994; pp 1-64.
  8. Bajaj, P.; Roopanwal, A. K. J. Macromol. Sci., Rev. Macromol. Chem. Phys. 1997, C37, 97.
  9. Dalton, S.; Heatley, F.; Budd, P. M. Polymer 1999, 40, 5531. https://doi.org/10.1016/S0032-3861(98)00778-2
  10. Zhang, W. X.; Wang, Y. Z. J. Appl. Polym. Sci. 2002, 85, 153. https://doi.org/10.1002/app.10560
  11. Jin, D.; Huang, Y.; Liu, X.; Yu, Y. J. Mater. Sci. 2004, 39, 3365. https://doi.org/10.1023/B:JMSC.0000026937.66268.9f
  12. Sung, M. G.; Sassa, K.; Tagawa, T.; Miyata, T.; Ogawa, H.; Doyama, M. Carbon 2002, 40, 2013. https://doi.org/10.1016/S0008-6223(02)00059-3
  13. Gupta, A.; Harrison, I. R. Carbon 1996, 34, 1427. https://doi.org/10.1016/S0008-6223(96)00094-2
  14. Johannis, S.; Spyridon, S. Polym. Int. 2008, 57, 99. https://doi.org/10.1002/pi.2322
  15. Fitzer, E.; Mueller, D. J. Makromol. Chem. 1971, 144, 117. https://doi.org/10.1002/macp.1971.021440110
  16. Fitzer, E.; Frohs, W.; Heine, M. Carbon 1986, 24, 387 https://doi.org/10.1016/0008-6223(86)90257-5
  17. Mueller, D. J.; Fitazer, E.; Fiedler, A. K. Proceedings of the International Conference on Carbon Fibres, their Composites and Applications; London, paper 2, 1971; pp 1.
  18. Manocha, L. M.; Bahl, O. P.; Jain, G. C. Angew. Makromol. Chem. 1978, 67, 11. https://doi.org/10.1002/apmc.1978.050670102
  19. Soulis, S.; Simitzis, J. Polym. Int. 2005, 54, 1474. https://doi.org/10.1002/pi.1871
  20. Wang, P. H. J. Appl Polym. Sci. 1998, 67, 1185. https://doi.org/10.1002/(SICI)1097-4628(19980214)67:7<1185::AID-APP3>3.0.CO;2-C
  21. Nascar, A. K.; Walker, R. A.; Proulx, S.; Edie, D. D.; Ogale, A. A. Carbon 2005, 43, 1065. https://doi.org/10.1016/j.carbon.2004.11.047
  22. Fitzer, E.; Mueller, D. J. Chemiker- Zeitung 1972, 96, 20.
  23. Bajaj, P.; Roopanwal, A. K. J. Macromol. Sci., Rev. Macromol. Chem. Phys. 1997, C37, 97
  24. Hinrici-Olive, G.; Olive, S. Adv. Polym. Sci. 1983, 51, 1. https://doi.org/10.1007/BFb0017584
  25. Spyridon, S.; Johannis, S. Polym. Int. 2005, 54, 1474 https://doi.org/10.1002/pi.1871
  26. Bajaj, P.; Roopanwal, A. K. J. Macromol. Sci., Rev. Macromol. Chem. Phys. 1997, C37, 97.
  27. Hinrici-Olive, G.; Olive, S. Adv. Polym. Sci. 1983, 51, 1. https://doi.org/10.1007/BFb0017584
  28. Spyridon, S.; Johannis, S. Polym. Int. 2005, 54, 1474. https://doi.org/10.1002/pi.1871
  29. Mueller, D. J.; Fitazer, E.; Fiedler, A. K. Proceedings of the International Conference on Carbon Fibres, their Composites and Applications; London, paper 2, 1971; pp 1.
  30. Tagawa, T.; Miyata, T. Materials Science and Engineering 1997, A238, 336.
  31. Chen, J. C.; Harrison, I. R. Carbon 2002, 40, 25. https://doi.org/10.1016/S0008-6223(01)00050-1
  32. Honjo, K. Carbon 2003, 41, 979. https://doi.org/10.1016/S0008-6223(02)00444-X
  33. Sung, M.-G.; Kawabata, Y. Materials Science and Engineering 2008, A488, 247.

Cited by

  1. Roles of Nickel Layer Deposition on Surface and Electric Properties of Carbon Fibers vol.32, pp.5, 2011, https://doi.org/10.5012/bkcs.2011.32.5.1630
  2. Influence of External Tension on the Structure and Properties of Melt-Spun PAN Precursor Fibers during Thermal Oxidation vol.300, pp.10, 2015, https://doi.org/10.1002/mame.201500104
  3. Influence of air circulation on the structure and properties of melt-spun PAN precursor fibers during thermal oxidation vol.5, pp.47, 2015, https://doi.org/10.1039/C5RA00476D
  4. Structure and properties of partially cyclized polyacrylonitrile-based carbon fiber-precursor fiber prepared by melt-spun with ionic liquid as the medium of processing vol.55, pp.12, 2015, https://doi.org/10.1002/pen.24121
  5. Influence of γ-ray irradiation on structure and properties of PAN precursor fibers vol.56, pp.11, 2016, https://doi.org/10.1002/pen.24372
  6. Preparation of carbon fibers from a lignin copolymer with polyacrylonitrile vol.162, pp.5, 2009, https://doi.org/10.1016/j.synthmet.2012.01.017
  7. Recent Progress in Fabrication, Structure, and Properties of Carbon Fibers vol.52, pp.3, 2012, https://doi.org/10.1080/15583724.2012.705410
  8. An overview of new oxidation methods for polyacrylonitrile-based carbon fibers vol.16, pp.1, 2009, https://doi.org/10.5714/cl.2015.16.1.011
  9. Thermally Stable and Tough Coatings and Films Using Vinyl Silylated Lignin vol.6, pp.2, 2009, https://doi.org/10.1021/acssuschemeng.7b03387
  10. A comprehensive chemical model for the preliminary steps of the thermal stabilization process in a carbon fibre manufacturing line vol.3, pp.6, 2009, https://doi.org/10.1039/c8re00164b
  11. Preparation of Composite Monolith Supercapacitor Electrode Made from Textile-Grade Polyacrylonitrile Fibers and Phenolic Resin vol.13, pp.3, 2009, https://doi.org/10.3390/ma13030655