DOI QR코드

DOI QR Code

Surface Potential Change Depending on Molecular Orientation of Hexadecanethiol Self-Assembled Monolayers on Au(111)

  • Ito, Eisuke (Flucto-order Functions Asian Collaboration Team, RIKEN) ;
  • Arai, Takayuki (Department of Electronic Chemistry, Tokyo Institute of Technology) ;
  • Hara, Masahiko (Department of Electronic Chemistry, Tokyo Institute of Technology) ;
  • Noh, Jaegeun (Department of Chemistry, Hanyang University)
  • Published : 2009.06.20

Abstract

Surface potential and growth processes of hexadecanethiol (HDT) self-assembled monolayers (SAMs) on Au(111) surfaces were examined by Kelvin probe method and scanning tunneling microscopy. It was found that surface potential strongly depends on surface structure of HDT SAMs. The surface potential shift for the striped phase of HDT SAMs chemisorbed on Au(111) surface was +0.45 eV, which was nearly the same as that of the flat-lying hexadecane layer physisorbed on Au(111) surface. This result indicates that the interfacial dipole layer induced by adsorption of alkyl chains is a main contributor to the surface potential change. In the densely-packed HDT monolayer, further change of the surface potential was observed, suggesting that the dipole moment of the alkanethiol molecules is an origin of the surface potential change. These results indicate that the work function of a metal electrode can be modified by controlling the molecular orientation of an adsorbed molecule.

Keywords

References

  1. Ishii, H.; Sugiyama, K.; Ito, E.; Seki, K. Adv. Mat. 1999, 11, 605. https://doi.org/10.1002/(SICI)1521-4095(199906)11:8<605::AID-ADMA605>3.0.CO;2-Q
  2. Hill, I. G.; Milliron, D.; Schwarz, J.; Kahn, A. Appl. Surf. Sci. 2000, 166, 354. https://doi.org/10.1016/S0169-4332(00)00449-9
  3. Kera, S.; Yabuuchi, Y.; Yamane, H.; Setoyama, H.; Okudaira, K. K.; Kahn, A.; Ueno, N. Phys. Rev. B 2004, 70, 085304. https://doi.org/10.1103/PhysRevB.80.085304
  4. Evans, S. D.; Ulman, A. Chem. Phys. Lett. 1990, 170, 462. https://doi.org/10.1016/S0009-2614(90)87085-6
  5. Campbell, I. H.; Rubin, S.; Zawodzinski, T. A.; Kress, J. D.;Martin, R. L.; Smith, D. L.; Barashkov, N. N.; Ferraris, J. P. Phys. Rev. B 1996, 54, 14321. https://doi.org/10.1103/PhysRevB.54.R14321
  6. Miura, Y.; Kimura, S.; Kobayashi, S.; Iwamoto, M.; Imanishi, Y.; Umemura, J. Chem. Phys. Lett. 1999, 315, 1. https://doi.org/10.1016/S0009-2614(99)01191-4
  7. L$\ddot{u}$, J.; Delamarche, E.; Eng, L.; Bennewitz, R.; Meyer, E.;Guntherodt, H.-J. Langmuir 1999, 15, 8184. https://doi.org/10.1021/la9904861
  8. L\ddot{u}, J.; Eng, L.; Bennewitz, R.; Meyer, E.; Güntherodt, H.-J.; Delamarche, E.; Scandella, L. Surf. Inter. Anal. 1999, 27, 368. https://doi.org/10.1002/(SICI)1096-9918(199905/06)27:5/6<368::AID-SIA530>3.0.CO;2-W
  9. Howell, S.; Kuila, D.; Kasibhatla, B.; Kubiak, C. P.; Janes, D.; Reifenberger, R. Langmuir 2002, 18, 5120. https://doi.org/10.1021/la0157014
  10. Ichii, T.; Fukuma, T.; Kobayashi, K.; Yamada, H.; Matsushige, K. Appl. Surf. Sci. 2003, 210, 99. https://doi.org/10.1016/S0169-4332(02)01487-3
  11. De Renzi, V.; Rousseau, R.; Marchetto, D.; Biagi, R.; Scandolo, S.; Pennino, U. Phys. Rev. Lett. 2005, 95, 046804. https://doi.org/10.1103/PhysRevLett.95.046804
  12. Ray, S. G.; Cohen, H.; Naaman, R.; Liu, H.; Waldeck, D. H. J. Phys. Chem. 2005, 109, 14064. https://doi.org/10.1021/jp050398r
  13. Rousseau, R.; De Renzi, V.; Mazzarello, R.; Marchetto, D.; Biagi, R.; Scandolo, S.; Pennino, U. J. Phys. Chem. B 2006, 110, 10862. https://doi.org/10.1021/jp061720g
  14. Lee, J.; Jung, B.; Lee, J.; Chu, H.; Do, L.; Shim, H. J. Mater. Chem. 2002, 12, 3494. https://doi.org/10.1039/b206939c
  15. Hatton, R. A.; Willis, M. R.; Chesters, M. A.; Rutten, F. J. M.;Briggs, D. J. Mater. Chem. 2003, 13, 38. https://doi.org/10.1039/b208169p
  16. Senda, T.; Wakamatsu, S.; Nakasa, A.; Akiba, U.; Fujihira, M. Ultramicroscopy 2003, 97, 27. https://doi.org/10.1016/S0304-3991(03)00027-5
  17. Pernstich, K. P.; Haas, S.; Oberhoff, D.; Goldmann, C.; Gundlach, D. J.; Batlogg, D.; Rashid, A. N.; Schitter, G. J. Appl. Phys. 2004, 96, 6431. https://doi.org/10.1063/1.1810205
  18. Saito, N.; Lee, S. H.; Takahiro, I.; Hieda, J.; Sugimura, H.; Takai, O. J. Phys. Chem. B 2005, 109, 11602. https://doi.org/10.1021/jp044943k
  19. Appleyard, S. F. J.; Day, S. R.; Pickford, R. D.; Willis, M. R. J. Mater. Chem. 2000, 10, 169. https://doi.org/10.1039/a903708j
  20. Noh, J.; Hara, M. Langmuir 2000, 16, 2045. https://doi.org/10.1021/la991423l
  21. Kondoh, H.; Kodama, C.; Sumida, H.; Nozoe, H. J. Chem. Phys. 1999, 111, 1175. https://doi.org/10.1063/1.479302
  22. Poirier, G. E.; Fitts, W. P.; White, J. M. Langmuir 2001, 17, 1176. https://doi.org/10.1021/la0012788
  23. Noh, J.; Hara, M. Langmuir 2002, 18, 1953. https://doi.org/10.1021/la010803f
  24. Li, S.; Xu, L.; Wan, L.; Wang, S.; Jiang, L. J. Phys. Chem. B 2006, 110, 1794. https://doi.org/10.1021/jp055616v
  25. Fukuma, T.; Kobayashi, K.; Horiuchi, H.; Yamada, H.; Matsushige, K. Appl. Phys. A 2001, 72, S109. https://doi.org/10.1007/s003390100646
  26. Rosu, D. M.; Jones, J. C.; Hsu, J. W. P.; Kavanagh, K. L.;Tsankov, D. ; Schade, U.; Esser, N.; Hinrichs, K. Langmuir 2009, 25, 919. https://doi.org/10.1021/la8026557
  27. Zangwill, A. Physics at Surfaces; Cambridge University Press: Cambridge, 1988; p 185.
  28. Ito, E.; Oji, H.; Ishii, H.; Oichi, K.; Ouchi, Y.; Seki, K. Chem. Phys. Lett. 1998, 287, 137. https://doi.org/10.1016/S0009-2614(98)00153-5
  29. Morikawa, Y.; Ishii, H.; Seki, K. Phys. Rev. B 2004, 69, 041403. https://doi.org/10.1103/PhysRevB.69.041403
  30. Hückstädt, C.; Schmidt, S.; Hüfner, S.; Forster, F.; Reinert, F.;Springborg, M. Phys. Rev. B 2006, 73, 075409. https://doi.org/10.1103/PhysRevB.73.075409
  31. Uosaki, K.; Yamada, R. J. Am. Chem. Soc. 1999, 121, 4090. https://doi.org/10.1021/ja984369o

Cited by

  1. 6-Mercaptopurine Self-Assembled Monolayers on Gold (001)-Hex: Revealing the Fate of Gold Adatoms vol.121, pp.16, 2017, https://doi.org/10.1021/acs.jpcc.7b02732
  2. Coexistence of Closely Packed c(4 × 2) and Striped Phases in Self-Assembled Monolayers of Decylthiocyanates on Au(111) vol.31, pp.4, 2010, https://doi.org/10.5012/bkcs.2010.31.04.901
  3. Controlling charge injection by self-assembled monolayers in bottom-gate and top-gate organic field-effect transistors vol.161, pp.21, 2009, https://doi.org/10.1016/j.synthmet.2011.08.020
  4. Thermal-Controlled Frictional Behaviour of Nanopatterned Self-assembled Monolayers as Triboactive Surfaces vol.68, pp.2, 2020, https://doi.org/10.1007/s11249-020-01291-z