DOI QR코드

DOI QR Code

Effects of Halothane on Dimyristoylphosphatidylcholine Lipid Bilayer Structure: A Molecular Dynamics Simulation Study

  • Oh, Kwang-Jin (Supercomputing Center, Korea Institute of Science and Technology Information) ;
  • Klein, Michael L. (Center for Molecular Modeling and Department of Chemistry, University of Pennsylvania)
  • Published : 2009.09.20

Abstract

We performed molecular dynamics simulations on dimyristoylphosphatidylcholine lipid bilayer with 50 mol% halothane. The structural properties, electron density profile, segmental order parameter of acyl chains, headgroup orientation distribution, water dipole orientation distribution, have been examined. Overall the effects of the halothane molecules on structural properties of DMPC lipid bilayer were found to be small. The electron density profiles, the segmental order parameter, the headgroup orientation, the water dipole orientation were not affected significantly by the halothane molecules. Pressure tensor calculations shows that the lateral pressure increases at the hydrocarbon tail region and the headgroup region, and decreases at the water-headgroup interfacial region.

Keywords

References

  1. Eckenhoff, R. G.; Johansson, J. S. Pharmacol. Rev. 1997, 49, 343
  2. Tu, K.; Tarek, M.; Klein, M. L.; Scharf, D. Biophys. J. 1998, 75, 2123 https://doi.org/10.1016/S0006-3495(98)77655-6
  3. Koubi, L.; Tarek, M.; Klein, M. L.; Scharf, D. Biophys. J. 2000, 78, 800 https://doi.org/10.1016/S0006-3495(00)76637-9
  4. Koubi, L.; Tarek, M.; Bandyopadhyay, S.; Klein, M. L.; Scharf, D. Biophys. J. 2001, 81, 3339. https://doi.org/10.1016/S0006-3495(01)75967-X
  5. Koubi, L.; Tarek, M.; Bandyopadhyay, S.; Klein, M. L.; Scharf, D. Anesthesiology 2002, 97, 848 https://doi.org/10.1097/00000542-200210000-00016
  6. Tang, P.; Xu, Y. Proc. Natl. Acad. Sci. USA 2002, 99, 16035 https://doi.org/10.1073/pnas.252522299
  7. Franks, N. P.; Lieb, W. R. J. Mol. Biol. 1979, 133, 469 https://doi.org/10.1016/0022-2836(79)90403-0
  8. Barber, J.; Ellena, J. F.; Cafiso, D. S. Biochemistry 1995, 34, 6533 https://doi.org/10.1021/bi00019a035
  9. North, C.; Cafiso, D. S. Biophys. J. 1997, 72, 1754 https://doi.org/10.1016/S0006-3495(97)78821-0
  10. Feller, S.; MacKerell, Jr., A. D. J. Phys. Chem. B 2000, 104, 7510 https://doi.org/10.1021/jp0007843
  11. Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926 https://doi.org/10.1063/1.445869
  12. Scharf, D.; Laasonen, K. Chem. Phys. Lett. 1996, 258, 276 https://doi.org/10.1016/0009-2614(96)00652-5
  13. Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. J. Chem. Phys. 1995, 103, 8577 https://doi.org/10.1063/1.470117
  14. Martyna, G. J.; Tuckerman, M. E.; Tobias, D. J.; Klein, M. L. Mol. Phys. 1996, 87, 1117 https://doi.org/10.1080/00268979650027054
  15. Marchi, M.; Procacci, P. J. Chem. Phys. 1998, 109, 5194 https://doi.org/10.1063/1.477136
  16. Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. C. J. Comp. Chem. 1977, 23, 327
  17. Andersen, H. C. J. Comp. Phys. 1983, 52, 24 https://doi.org/10.1016/0021-9991(83)90014-1
  18. Eckenhoff, R. G. Proc. Natl. Acad. Sci. USA 1996, 93, 2807 https://doi.org/10.1073/pnas.93.7.2807
  19. Trudell, J. R.; Hubble, W. L. Anesthesiology 1976, 44, 202 https://doi.org/10.1097/00000542-197603000-00005
  20. Xu, Y.; Tang, P. Biochim. Biophys. Acta-Biomembranes 1997, 1323, 154 https://doi.org/10.1016/S0005-2736(96)00184-8
  21. Tang, P.; Yan, B.; Xu, Y. Biophys. J. 1997, 72, 1676 https://doi.org/10.1016/S0006-3495(97)78813-1
  22. Seelig, J.; Macdonald, P. M.; Scherer, P. G. Biochemistry 1987, 26, 7535 https://doi.org/10.1021/bi00398a001
  23. Bandyopadhyay, S.; Shelley, J. C.; Klein, M. L. J. Phys. Chem. B 2001, 105, 5979 https://doi.org/10.1021/jp010243t
  24. Tu, K.; Tobias, D. J.; Klein, M. L. Biophys. J. 1995, 69, 2558 https://doi.org/10.1016/S0006-3495(95)80126-8
  25. Goetz, R.; Lipowsky, R. J. Chem. Phys. 1998, 108, 7397 https://doi.org/10.1063/1.476160
  26. Gullingsrud, J.; Schulten, K. Biophys. J. 2004, 86, 3496 https://doi.org/10.1529/biophysj.103.034322
  27. Lindahl E.; Edholm, O. J. Chem. Phys. 2000, 113, 3882 https://doi.org/10.1063/1.1287423
  28. Franks, N. P.; Lieb, W. R. Nature 1994, 367, 607 https://doi.org/10.1038/367607a0
  29. Cantor, R. J. Phys. Chem. B 1997, 101, 1723 https://doi.org/10.1021/jp963911x
  30. Cantor, R. Biochemistry 1997, 36, 2339 https://doi.org/10.1021/bi9627323
  31. Cantor, R. Biophys. J. 1999, 79, 2625
  32. Cantor, R. Biophys. J. 2001, 80, 2284 https://doi.org/10.1016/S0006-3495(01)76200-5
  33. Cantor, R. Biophys. J. 2002, 82, 2520 https://doi.org/10.1016/S0006-3495(02)75595-1
  34. Oh, K. J.; Klen, M. L. Comp. Phys. Comm. 2006, 174, 560 https://doi.org/10.1016/j.cpc.2005.12.002
  35. Patra, M.; Karttunen, M.; Hyvönen, M. T.; Falck, E.; Lindqvist, P.; Vattulainen, I. Biophys. J. 2003, 84, 3636 https://doi.org/10.1016/S0006-3495(03)75094-2

Cited by

  1. Anesthetic molecules embedded in a lipid membrane: a computer simulation study vol.14, pp.37, 2012, https://doi.org/10.1039/c2cp41581j
  2. The effect of anaesthetics on the properties of a lipid membrane in the biologically relevant phase: a computer simulation study vol.17, pp.22, 2015, https://doi.org/10.1039/C5CP00851D
  3. A volumetric and NMR study of cyclodextrin-inhalation anesthetic complexes in aqueous solutions vol.93, pp.8, 2015, https://doi.org/10.1139/cjc-2014-0549
  4. Lateral Pressure Profile and Free Volume Properties in Phospholipid Membranes Containing Anesthetics vol.121, pp.13, 2017, https://doi.org/10.1021/acs.jpcb.7b00990
  5. Molecular dynamics simulation study of the effect of halothane on mixed DPPC/DPPE phospholipid membranes vol.25, pp.1, 2019, https://doi.org/10.1007/s00894-018-3890-6
  6. Molecular Dynamics Simulation Study for Ionic Strength Dependence of RNA-host factor Interaction in Staphylococcus aureus Hfq vol.31, pp.6, 2010, https://doi.org/10.5012/bkcs.2010.31.6.1519
  7. Molecular Dynamics and Metadynamics Insights of 1,4-Dioxane-Induced Structural Changes of Biomembrane Models vol.123, pp.37, 2009, https://doi.org/10.1021/acs.jpcb.9b04313
  8. Transmembrane penetration mechanism of cyclic pollutants inspected by molecular dynamics and metadynamics: the case of morpholine, phenol, 1,4-dioxane and oxane vol.23, pp.28, 2009, https://doi.org/10.1039/d1cp01521d