DOI QR코드

DOI QR Code

Investigation of Isomerism in Anthracene-Isothiouronium Salts and Application of these Salts for Anion Sensing

  • Nguyen, Quynh Pham Bao (Department of Applied Chemistry and Center for Functional Nano Fine Chemicals, Chonnam National University) ;
  • Kim, Jae-Nyoung (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Kim, Taek-Hyeon (Department of Applied Chemistry and Center for Functional Nano Fine Chemicals, Chonnam National University)
  • Published : 2009.09.20

Abstract

Novel fluorescent anion chemosensors based on anthracene-isothiouronium derivatives were synthesized. Isomerism due to the intramolecular mobility in these isothiouronium salts was detected by $^1H$ NMR spectroscopy. The effect of the substituent, temperature and solvent on the isomerism was also examined. The anthracene-isothiouronium sensor showed significant fluorescent enhancement upon the addition of various anions such as fluoride, acetate, and dihydrogen phosphate, even in the presence of water.

Keywords

References

  1. Manez, R. M.; Sancenon, F. Chem. Rev. 2003, 103, 4419-4476 https://doi.org/10.1021/cr010421e
  2. Manez, R. M.; Sancenon, F. Journal of Fluorescene 2005, 15, 267-285 https://doi.org/10.1007/s10895-005-2626-z
  3. Gunnlaugsson, T.; Davis, A. P.; Hussey, G. M.; Tierney, J.; Glynn, M. Org. Biomol. Chem. 2004, 2, 1856-1863 https://doi.org/10.1039/b404706k
  4. Gunnlaugsson, T.; Davis, A. P.; O'Brien, J. E.; Glynn, M. Org. Biomol. Chem. 2005, 3, 48-56 https://doi.org/10.1039/b409018g
  5. Kim, S. K.; Singh, N. J.; Kim, S. J.; Swamy, K. M. K.; Kim, S. H.; Lee, K. H.; Kim, K. S.; Yoon, J. Tetrahedron 2005, 61, 4545-4550 https://doi.org/10.1016/j.tet.2005.03.009
  6. Kim, Y. K.; Lee, H. N.; Singh, N. J.; Choi, H. J.; Xue, J. Y.; Kim, K. S.; Yoon, J.; Hyun, M. H. J. Org. Chem. 2008, 73, 301-304 https://doi.org/10.1021/jo7022813
  7. Jun, E. J.; Swamy, K. M. K.; Bang, H.; Kim, S. J.; Yoon, J. Tetrahedron Letters 2006, 47, 3103-3106 https://doi.org/10.1016/j.tetlet.2006.02.147
  8. Nishizawa, S.; Kaneda, H.; Uchida, T.; Teramae, N. J. Chem. Soc. Perkin Trans. 2 1998, 2325-2327
  9. Chakraborty, S.; Tarr, M. A. Can. J. Chem. 2007, 85, 153-156 https://doi.org/10.1139/V07-009
  10. Liu, S. Y.; Fang, L.; He, Y. B.; Chan, W. H.; Yeung, K. T.; Cheng, Y. K.; Yang, R. H. Org. Lett. 2005, 7, 5825-5828 https://doi.org/10.1021/ol052341t
  11. Yen, Y. P.; Ho, K. W. Tetrahedron Letters 2006, 47, 1193-1196 https://doi.org/10.1016/j.tetlet.2005.12.009
  12. Zeng, Z. Y.; He, Y. B.; Wu, J. L.; Wei, L. H.; Liu, X.; Meng, L. Z.; Yang, X. Eur. J. Org. Chem. 2004, 2888-2893
  13. Sasaki, S. I.; Citterio, D.; Ozawa, S.; Suzuki, K. J. Chem. Soc. Perkin Trans. 2 2001, 2309-2313
  14. Xie, H.; Yi, S.; Wu, S. J. Chem. Soc., Perkin Trans. 2 1999, 2751-2754
  15. Kubo, Y.; Ishihara, S.; Tsukahara, M.; Tokita, S. J. Chem. Soc., Perkin Trans. 2 2002, 1455-1460
  16. Kubo, Y.; Kato, M.; Misawa, Y.; Tokita, S. Tetrahedron Letters 2004, 45, 3769-3773 https://doi.org/10.1016/j.tetlet.2004.03.076
  17. Kubo, Y.; Tsukahara, M.; Ishihara, S.; Tokita, S. Chem. Commun. 2000, 653-654
  18. Nishizawa, S.; Cui, Y. Y.; Minagawa, M.; Morita, K.; Kato, Y.; Taniguchi, S.; Kato, R.; Teramae, N. J. Chem. Soc. Perkin Trans. 2 2002, 866-870
  19. Yeo, W. S.; Hong, J. I. Tetrahedron Letters 1998, 39, 3769-3772 https://doi.org/10.1016/S0040-4039(98)00612-1
  20. Yeo, W. S.; Hong, J. I. Tetrahedron Letters 1998, 39, 8137-8140 https://doi.org/10.1016/S0040-4039(98)01806-1
  21. Lecher, H. Z.; Gubernator, K. J. Am. Chem. Soc. 1953, 75, 1087-1092 https://doi.org/10.1021/ja01101a023
  22. Kessler, H. Angew. Chem. Internat. Edit. 1970, 9, 219-235 https://doi.org/10.1002/anie.197002191
  23. Kessler, H. Tetrahedron 1974, 30, 1861-1870 https://doi.org/10.1016/S0040-4020(01)97319-3
  24. Prevorsek, D. C.; J. Phys. Chem. 1962, 66, 769-778 https://doi.org/10.1021/j100811a001
  25. Kessler, H.; Kalinowski, H. O. Angew. Chem. Internat. Edit. 1970, 9, 641-642 https://doi.org/10.1002/anie.197006411
  26. Kim, W.; Lee, H. J.; Choi, Y. S.; Choi, J. H.; Yoon, C. J. J. Chem. Soc., Faraday Trans 1998, 94, 2663-2668 https://doi.org/10.1039/a803947j
  27. Quinonero, D.; Frontera, A.; Capo, M.; Ballester, P.; Suner, G. A.; Garau, C.; Deya, P. M. New J. Chem. 2001, 259-261
  28. Fischer, G. Chem. Soc. Rev. 2000, 29, 119-127 https://doi.org/10.1039/a803742f
  29. Taha, A. N.; True, N. S. J. Phys. Chem. A 2000, 104, 2985-2993 https://doi.org/10.1021/jp993915c
  30. Axe, F. U.; Renugopalakrishnan, V.; Hagler, A. T. J. Chem. Research (S) 1998, 1
  31. Vaara, J.; Kaski, J.; Jokisaasi, J.; Diehl, P. J. Phys. Chem. A 1997, 101, 5069-5081 https://doi.org/10.1021/jp970287v
  32. Licea, R. Q.; Valladares, J. F. C.; Quintero, A. C.; Padilla, C. R.; Guerra, R. T.; Flores, R. G.; Waksman, N. Molecules 2002, 7, 662-673 https://doi.org/10.3390/70800662
  33. Bonacorso, H. G.; Caro, M. S. B.; Zanatta, N.; Martins, A. P. J. Braz. Chem. Soc. 1992, 3, 77-79 https://doi.org/10.5935/0103-5053.19920015
  34. Ren, J.; Cai, X. H.; Fan, H. F.; Cao, J. X.; Liao, T. G.; Luo, X. D.; Zhu, H. J. Journal of Molecular Structure: Theochem 2008, 870, 72-76 https://doi.org/10.1016/j.theochem.2008.09.006
  35. Eliel, E. L.; Hofer, O. J. Am. Chem. Soc. 1973, 8041-8045
  36. Konopacka, A.; Kalenik, J.; Pawelka, Z. Journal of Molecular Structure 2004, 705, 75-79 https://doi.org/10.1016/j.molstruc.2004.05.032
  37. Ingold, K. U.; Taylor, D. R. Can. J. Chem. 1961, 39, 481-487 https://doi.org/10.1139/v61-057
  38. Eftink, M. R. Methods in Enzymology 1997, 278, 221-257 https://doi.org/10.1016/S0076-6879(97)78013-3
  39. Cannon, W. R.; Madura, J. D.; Thummel, R. P.; McCammon, J. A. J. Am. Chem. Soc. 1993, 115, 879-884 https://doi.org/10.1021/ja00056a009
  40. Gunnlaugsson, T.; Ali, H. D. P.; Glynn, M.; Kruger, P. E.; Hussey, G. M.; Pfeffer, F. M.; Santos, C. M. G. D.; Tierney, J. Journal of Fluorescence 2005, 15, 287-299 https://doi.org/10.1007/s10895-005-2627-y

Cited by

  1. N Nuclear Quadrupole Double Resonance, X-ray, and Density Functional Theory/Quantum Theory of Atoms in Molecules vol.116, pp.5, 2012, https://doi.org/10.1021/jp210322p
  2. ChemInform Abstract: Investigation of Isomerism in Anthracene-Isothiouronium Salts and Application of these Salts for Anion Sensing vol.41, pp.4, 2010, https://doi.org/10.1002/chin.201004098
  3. Isothiouronium Salts Based on Anthracene and Pyrene as Anion Sensors vol.31, pp.3, 2009, https://doi.org/10.5012/bkcs.2010.31.03.712
  4. Chiral thiouronium salts: synthesis, characterisation and application in NMR enantio-discrimination of chiral oxoanions vol.37, pp.2, 2009, https://doi.org/10.1039/c2nj40632b
  5. Isothiouronium Salts as Catalysts for the Direct Reductive Amination of Aldehydes with a Hantzsch Ester vol.39, pp.4, 2018, https://doi.org/10.1002/bkcs.11424
  6. Interfacial Supramolecular Structures of Amphiphilic Receptors Drive Aqueous Phosphate Recognition vol.141, pp.19, 2019, https://doi.org/10.1021/jacs.9b02148
  7. Direct Reductive Amination of Aldehydes Using Hantzsch Ester Promoted by N,N′ ‐Diphenyl‐ S ‐Benzylisothiouronium Iodide as an Organocatalyst vol.40, pp.10, 2009, https://doi.org/10.1002/bkcs.11863