References
- Manez, R. M.; Sancenon, F. Chem. Rev. 2003, 103, 4419-4476 https://doi.org/10.1021/cr010421e
- Manez, R. M.; Sancenon, F. Journal of Fluorescene 2005, 15, 267-285 https://doi.org/10.1007/s10895-005-2626-z
- Gunnlaugsson, T.; Davis, A. P.; Hussey, G. M.; Tierney, J.; Glynn, M. Org. Biomol. Chem. 2004, 2, 1856-1863 https://doi.org/10.1039/b404706k
- Gunnlaugsson, T.; Davis, A. P.; O'Brien, J. E.; Glynn, M. Org. Biomol. Chem. 2005, 3, 48-56 https://doi.org/10.1039/b409018g
- Kim, S. K.; Singh, N. J.; Kim, S. J.; Swamy, K. M. K.; Kim, S. H.; Lee, K. H.; Kim, K. S.; Yoon, J. Tetrahedron 2005, 61, 4545-4550 https://doi.org/10.1016/j.tet.2005.03.009
- Kim, Y. K.; Lee, H. N.; Singh, N. J.; Choi, H. J.; Xue, J. Y.; Kim, K. S.; Yoon, J.; Hyun, M. H. J. Org. Chem. 2008, 73, 301-304 https://doi.org/10.1021/jo7022813
- Jun, E. J.; Swamy, K. M. K.; Bang, H.; Kim, S. J.; Yoon, J. Tetrahedron Letters 2006, 47, 3103-3106 https://doi.org/10.1016/j.tetlet.2006.02.147
- Nishizawa, S.; Kaneda, H.; Uchida, T.; Teramae, N. J. Chem. Soc. Perkin Trans. 2 1998, 2325-2327
- Chakraborty, S.; Tarr, M. A. Can. J. Chem. 2007, 85, 153-156 https://doi.org/10.1139/V07-009
- Liu, S. Y.; Fang, L.; He, Y. B.; Chan, W. H.; Yeung, K. T.; Cheng, Y. K.; Yang, R. H. Org. Lett. 2005, 7, 5825-5828 https://doi.org/10.1021/ol052341t
- Yen, Y. P.; Ho, K. W. Tetrahedron Letters 2006, 47, 1193-1196 https://doi.org/10.1016/j.tetlet.2005.12.009
- Zeng, Z. Y.; He, Y. B.; Wu, J. L.; Wei, L. H.; Liu, X.; Meng, L. Z.; Yang, X. Eur. J. Org. Chem. 2004, 2888-2893
- Sasaki, S. I.; Citterio, D.; Ozawa, S.; Suzuki, K. J. Chem. Soc. Perkin Trans. 2 2001, 2309-2313
- Xie, H.; Yi, S.; Wu, S. J. Chem. Soc., Perkin Trans. 2 1999, 2751-2754
- Kubo, Y.; Ishihara, S.; Tsukahara, M.; Tokita, S. J. Chem. Soc., Perkin Trans. 2 2002, 1455-1460
- Kubo, Y.; Kato, M.; Misawa, Y.; Tokita, S. Tetrahedron Letters 2004, 45, 3769-3773 https://doi.org/10.1016/j.tetlet.2004.03.076
- Kubo, Y.; Tsukahara, M.; Ishihara, S.; Tokita, S. Chem. Commun. 2000, 653-654
- Nishizawa, S.; Cui, Y. Y.; Minagawa, M.; Morita, K.; Kato, Y.; Taniguchi, S.; Kato, R.; Teramae, N. J. Chem. Soc. Perkin Trans. 2 2002, 866-870
- Yeo, W. S.; Hong, J. I. Tetrahedron Letters 1998, 39, 3769-3772 https://doi.org/10.1016/S0040-4039(98)00612-1
- Yeo, W. S.; Hong, J. I. Tetrahedron Letters 1998, 39, 8137-8140 https://doi.org/10.1016/S0040-4039(98)01806-1
- Lecher, H. Z.; Gubernator, K. J. Am. Chem. Soc. 1953, 75, 1087-1092 https://doi.org/10.1021/ja01101a023
- Kessler, H. Angew. Chem. Internat. Edit. 1970, 9, 219-235 https://doi.org/10.1002/anie.197002191
- Kessler, H. Tetrahedron 1974, 30, 1861-1870 https://doi.org/10.1016/S0040-4020(01)97319-3
- Prevorsek, D. C.; J. Phys. Chem. 1962, 66, 769-778 https://doi.org/10.1021/j100811a001
- Kessler, H.; Kalinowski, H. O. Angew. Chem. Internat. Edit. 1970, 9, 641-642 https://doi.org/10.1002/anie.197006411
- Kim, W.; Lee, H. J.; Choi, Y. S.; Choi, J. H.; Yoon, C. J. J. Chem. Soc., Faraday Trans 1998, 94, 2663-2668 https://doi.org/10.1039/a803947j
- Quinonero, D.; Frontera, A.; Capo, M.; Ballester, P.; Suner, G. A.; Garau, C.; Deya, P. M. New J. Chem. 2001, 259-261
- Fischer, G. Chem. Soc. Rev. 2000, 29, 119-127 https://doi.org/10.1039/a803742f
- Taha, A. N.; True, N. S. J. Phys. Chem. A 2000, 104, 2985-2993 https://doi.org/10.1021/jp993915c
- Axe, F. U.; Renugopalakrishnan, V.; Hagler, A. T. J. Chem. Research (S) 1998, 1
- Vaara, J.; Kaski, J.; Jokisaasi, J.; Diehl, P. J. Phys. Chem. A 1997, 101, 5069-5081 https://doi.org/10.1021/jp970287v
- Licea, R. Q.; Valladares, J. F. C.; Quintero, A. C.; Padilla, C. R.; Guerra, R. T.; Flores, R. G.; Waksman, N. Molecules 2002, 7, 662-673 https://doi.org/10.3390/70800662
- Bonacorso, H. G.; Caro, M. S. B.; Zanatta, N.; Martins, A. P. J. Braz. Chem. Soc. 1992, 3, 77-79 https://doi.org/10.5935/0103-5053.19920015
- Ren, J.; Cai, X. H.; Fan, H. F.; Cao, J. X.; Liao, T. G.; Luo, X. D.; Zhu, H. J. Journal of Molecular Structure: Theochem 2008, 870, 72-76 https://doi.org/10.1016/j.theochem.2008.09.006
- Eliel, E. L.; Hofer, O. J. Am. Chem. Soc. 1973, 8041-8045
- Konopacka, A.; Kalenik, J.; Pawelka, Z. Journal of Molecular Structure 2004, 705, 75-79 https://doi.org/10.1016/j.molstruc.2004.05.032
- Ingold, K. U.; Taylor, D. R. Can. J. Chem. 1961, 39, 481-487 https://doi.org/10.1139/v61-057
- Eftink, M. R. Methods in Enzymology 1997, 278, 221-257 https://doi.org/10.1016/S0076-6879(97)78013-3
- Cannon, W. R.; Madura, J. D.; Thummel, R. P.; McCammon, J. A. J. Am. Chem. Soc. 1993, 115, 879-884 https://doi.org/10.1021/ja00056a009
- Gunnlaugsson, T.; Ali, H. D. P.; Glynn, M.; Kruger, P. E.; Hussey, G. M.; Pfeffer, F. M.; Santos, C. M. G. D.; Tierney, J. Journal of Fluorescence 2005, 15, 287-299 https://doi.org/10.1007/s10895-005-2627-y
Cited by
- N Nuclear Quadrupole Double Resonance, X-ray, and Density Functional Theory/Quantum Theory of Atoms in Molecules vol.116, pp.5, 2012, https://doi.org/10.1021/jp210322p
- ChemInform Abstract: Investigation of Isomerism in Anthracene-Isothiouronium Salts and Application of these Salts for Anion Sensing vol.41, pp.4, 2010, https://doi.org/10.1002/chin.201004098
- Isothiouronium Salts Based on Anthracene and Pyrene as Anion Sensors vol.31, pp.3, 2009, https://doi.org/10.5012/bkcs.2010.31.03.712
- Chiral thiouronium salts: synthesis, characterisation and application in NMR enantio-discrimination of chiral oxoanions vol.37, pp.2, 2009, https://doi.org/10.1039/c2nj40632b
- Isothiouronium Salts as Catalysts for the Direct Reductive Amination of Aldehydes with a Hantzsch Ester vol.39, pp.4, 2018, https://doi.org/10.1002/bkcs.11424
- Interfacial Supramolecular Structures of Amphiphilic Receptors Drive Aqueous Phosphate Recognition vol.141, pp.19, 2019, https://doi.org/10.1021/jacs.9b02148
- Direct Reductive Amination of Aldehydes Using Hantzsch Ester Promoted by N,N′ ‐Diphenyl‐ S ‐Benzylisothiouronium Iodide as an Organocatalyst vol.40, pp.10, 2009, https://doi.org/10.1002/bkcs.11863