DOI QR코드

DOI QR Code

Conformational Analysis and Electronic Properties of 2-Cyano-3-(thiophen-2-yl)acrylic Acid in Sensitizers for Dye-sensitized Solar Cells: A Theoretical Study

  • Balanay, Mannix P. (Department of Chemistry, Kunsan National University) ;
  • Kim, Se-Mi (Department of Chemistry, Kunsan National University) ;
  • Lee, Mi-Jung (Department of Chemistry, Kunsan National University) ;
  • Lee, Sang-Hee (Department of Chemistry, Kunsan National University) ;
  • Kim, Dong-Hee (Department of Chemistry, Kunsan National University)
  • Published : 2009.09.20

Abstract

The conformational and electronic properties of 2-cyano-3-(thiophen-2-yl)acrylic acid (TCA) in analogues used as sensitizers in dye-sensitized solar cells was examined using density functional theory (DFT) and natural bond orbital analysis methods. A relaxed potential energy surface scan was performed on NKX-2677 by rotating the C-C bond between the thiophene and cyanoacrylic acid which yielded activation energy barriers of about 13 kcal/mol for both E and Z configurations. The most stable conformation of all the analogues was E-180 except for NKX-2587 which has an electrostatic repulsion between the oxygen of the coumarin and the nitrogen of the cyanoacrylic acid. The increase in the electron delocalization between the thiophene and cyanoacrylic acid influences the stability for most of the analogues. But for NKX-2600, even though there was a greater deviation from the planarity of TCA, the stability was mainly due to the presence of a weak hydrogen bond between the hydrogen of the methyl group of the amine located in the donor moiety and the nitrogen of the cyanoacrylic acid. The vertical excitation energies of the analogues containing TCA were calculated by time-dependent DFT method. There were slight differences in its vertical excitation energies but the oscillator strengths vary significantly especially in the case of NKX-2600.

Keywords

References

  1. Hara, K.; Sato, T.; Katoh, R.; Furube, A.; Yoshihara, T.; Murai, M.; Kurashige, M.; Ito, S.; Shinpo, A.; Suga, S.; Arakawa, H. Adv. Funct. Mater. 2005, 15, 246 https://doi.org/10.1002/adfm.200400272
  2. Hara, K.; Wang, Z. S.; Sato, T.; Furube, A.; Katoh, R.; Sugihara, H.; Dan-Oh, Y.; Kasada, C.; Shinpo, A.; Suga, S. J. Phys. Chem. B 2005, 109, 15476 https://doi.org/10.1021/jp0518557
  3. Hagberg, D. P.; Marinado, T.; Karlsson, K. M.; Nonomura, K.; Qin, P.; Boschloo, G.; Brinck, T.; Hagfeldt, A.; Sun, L. J. Org. Chem. 2007, 72, 9550 https://doi.org/10.1021/jo701592x
  4. Justin Thomas, K. R.; Hsu, Y.-C.; Lin, J. T.; Lee, K.-M.; Ho, K.-C.; Lai, C.-H.; Cheng, Y.-M.; Chou, P.-T. Chem. Mater. 2008, 20, 1830 https://doi.org/10.1021/cm702631r
  5. Cai-Rong, Z.; Zi-Jiang, L.; Yu-Hong, C.; Hong-Shan, C.; You-Zhi, W.; Li-Hua, Y. J. Mol. Struct.:THEOCHEM 2009, 899, 86 https://doi.org/10.1016/j.theochem.2008.12.015
  6. Li, Y.; Liu, S.; Zhao, X.; Chen, M.; Ma, F. J. Mol. Struct.:THEOCHEM 2008, 867, 10 https://doi.org/10.1016/j.theochem.2008.07.028
  7. Yen, Y.-S.; Hsu, Y.-C.; Lin, J. T.; Chang, C.-W.; Hsu, C.-P.; Yin, D.-J. J. Phys. Chem. C 2008, 112, 12557 https://doi.org/10.1021/jp801036s
  8. Chen, R.; Yang, X.; Tian, H.; Wang, X.; Hagfeldt, A.; Sun, L. Chem. Mater. 2007, 19, 4007 https://doi.org/10.1021/cm070617g
  9. Tian, H.; Yang, X.; Chen, R.; Zhang, R.; Hagfeldt, A.; Sun, L. J. Phys. Chem. C 2008, 112, 11023 https://doi.org/10.1021/jp800953s
  10. Qin, P.; Yang, X.; Chen, R.; Sun, L.; Marinado, T.; Edvinsson, T.; Boschloo, G.; Hagfeldt, A. J. Phys. Chem. C 2007, 111, 1853 https://doi.org/10.1021/jp065550j
  11. Wang, Z.-S.; Koumura, N.; Cui, Y.; Takahashi, M.; Sekiguchi, H.; Mori, A.; Kubo, T.; Furube, A.; Hara, K. Chem. Mater. 2008, 20, 3993 https://doi.org/10.1021/cm8003276
  12. Choi, H.; Baik, C.; Kang, S. O.; Ko, J.; Kang, M.-S.; Nazeeruddin, M. K.; Grätzel, M. Angew. Chem. Int. Ed. 2008, 47, 327 https://doi.org/10.1002/anie.200703852
  13. Li, Z.; Zhao, Y.; Zhou, J.; Shen, Y. Eur. Polym. J. 2000, 36, 2417 https://doi.org/10.1016/S0014-3057(00)00033-1
  14. Breitung, E. M.; Shu, C.-F.; McMahon, R. J. J. Am. Chem. Soc. 2000, 122, 1154 https://doi.org/10.1021/ja9930364
  15. Wang, Q.; Campbell, W. M.; Bonfantani, E. E.; Jolley, K. W.; Officer, D. L.; Walsh, P. J.; Gordon, K.; Humphry-Baker, R.; Nazeeruddin, M. K.; Grätzel, M. J. Phys. Chem. B 2005, 109, 15397 https://doi.org/10.1021/jp052877w
  16. Ooyama, Y.; Shimada, Y.; Kagawa, Y.; Yamada, Y.; Imae, I.; Komaguchi, K.; Harima, Y. Tetrahedron Lett. 2007, 48, 9167 https://doi.org/10.1016/j.tetlet.2007.10.107
  17. Xu, M.; Wenger, S.; Bala, H.; Shi, D.; Li, R.; Zhou, Y.; Zakeeruddin, S. M.; Grätzel, M.; Wang, P. J. Phys. Chem. C 2009, 113, 2966 https://doi.org/10.1021/jp809319x
  18. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A. J.; Vreven, T.; Kudin, K. N.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Pettersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. L.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challocombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A., Gaussian 03 Revision D.01; Gaussian, Inc.: Wallingford CT, 2004
  19. Becke, A. D. J. Chem. Phys. 1993, 98, 5648 https://doi.org/10.1063/1.464913
  20. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785 https://doi.org/10.1103/PhysRevB.37.785
  21. Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Weinhold, F., NBO Version 3.1, Theoretical Chemistry Institute, University of Wisconsin, Madison, USA
  22. Tenderholt, A. L., QMForge, version 2.1, Standford University, Standford, CA, USA, October 30, 2007, http://qmforge.sourceforge.net.
  23. Markham, G. D.; Bock, C. W. J. Mol. Struct.:THEOCHEM 1997, 418, 139 https://doi.org/10.1016/S0166-1280(96)05023-3
  24. Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond in Structural Chemistry and Biology; Oxford University Press: Oxford, New York, 1999

Cited by

  1. Semiconductors vol.116, pp.40, 2012, https://doi.org/10.1021/jp303647x
  2. Density Functional Theory (DFT) Study of Triphenylamine-Based Dyes for Their Use as Sensitizers in Molecular Photovoltaics vol.13, pp.12, 2012, https://doi.org/10.3390/ijms13044418
  3. Films for Improved Photovoltaics vol.6, pp.24, 2014, https://doi.org/10.1021/am506365a
  4. Rationalization of Dye Uptake on Titania Slides for Dye-Sensitized Solar Cells by a Combined Chemometric and Structural Approach vol.7, pp.11, 2014, https://doi.org/10.1002/cssc.201402194
  5. Film for Dye-Sensitized Solar Cells vol.120, pp.44, 2016, https://doi.org/10.1021/acs.jpca.6b08752
  6. TD-DFT investigation of D–π–A organic dyes with thiophene moieties as π-spacers for use as sensitizers in DSSCs vol.22, pp.5, 2016, https://doi.org/10.1007/s00894-016-2978-0
  7. redox electrolyte vol.9, pp.32, 2017, https://doi.org/10.1039/C7NR03936K
  8. Molecular modification of coumarin dyes for more efficient dye sensitized solar cells vol.136, pp.19, 2009, https://doi.org/10.1063/1.4711049
  9. A theoretical investigation of the optoelectronic performance of some new carbazole dyes vol.18, pp.3, 2009, https://doi.org/10.1007/s10825-019-01339-x