DOI QR코드

DOI QR Code

Purification and NMR Studies of RNA Polymerase II C-Terminal Domain Phosphatase 1 Containing Ubiquitin Like Domain

  • Ko, Sung-Geon (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University) ;
  • Lee, Young-Min (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University) ;
  • Yoon, Jong-Bok (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University) ;
  • Lee, Weon-Tae (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University)
  • Published : 2009.05.20

Abstract

RNA polymerase II C-terminal domain phosphatase 1 containing ubiquitin like domain (UBLCP1) has been identified as a regulatory molecule of RNA polymerase II. UBLCP1 consists of ubiquitin like domain (UBL) and phosphatase domain homologous with UDP and CTD phosphatase. UBLCP1 was cloned into the E.coli expression vectors, pET32a and pGEX 4T-1 with TEV protease cleavage site and purified using both affinity and gel-filtration chromatography. Domains of UBLCP1 protein were successfully purified as 7 mg/500 mL (UBLCP1, 36.78 KDa), 32 mg/500 mL (UBL, 9 KDa) and 8 mg/500 mL (phosphatase domain, 25 KDa) yielded in LB medium, respectively. Isotope-labeled samples including triple-labeled ($^2H/^{15}N/^{13}C$) UBLCP1 were also prepared for hetero-nuclear NMR experiments. $^{15}N-^{1}H$ 2D-HSQC spectra of UBLCP1 suggest that both UBL and phosphatase domain are properly folded and structurally independent each other. These data will promise us further structural investigation of UBLCP1 by NMR spectroscopy and/or X-ray crystallography.

Keywords

References

  1. Cramer, P.; Armache, K. J.; Baumli, S.; Benkert, S.; Brueckner, F.; Buchen, C.; Damsma, G. E.; Dengl, S.; Geiger, S. R.; Jasiak, A. J.; Jawhari, A.; Jennebach, S.; Kamenski, T.; Kettenberger, H.; Kuhn, C. D.; Lehmann, E.; Leike, K.; ydow, J. F.; Vannini, A. In Annual Review of Biophysics and Biomolecular Structure; Rees, D. C.; Sheetz, M. P.; Williamson, J. R., Eds.; 2008; Vol. 37, p 337-352 https://doi.org/10.1146/annurev.biophys.37.032807.130008
  2. Dahmus, M. E. Journal of Biological Chemistry 1996, 271, 19009-19012 https://doi.org/10.1074/jbc.271.32.19009
  3. Dahmus, M. E. Biochim. Biophys. Acta 1995, 1261, 171-182 https://doi.org/10.1016/0167-4781(94)00233-S
  4. Maniatis, T.; Reed, R. Nature 2002, 416, 499-506 https://doi.org/10.1038/416499a
  5. Palancade, B.; Bensaude, O. Eur. J. Biochem. 2003, 270, 38593870 https://doi.org/10.1046/j.1432-1033.2003.03794.x
  6. Proudfoot, N. J.; Furger, A.; Dye, M. J. Cell 2002, 108, 501-512 https://doi.org/10.1016/S0092-8674(02)00617-7
  7. Sims, R. J., 3rd; Mandal, S. S.; Reinberg, D. Curr. Opin. Cell Biol. 2004, 16, 263-271 https://doi.org/10.1016/j.ceb.2004.04.004
  8. Laybourn, P. J.; Dahmus, M. E. J. Biol. Chem. 1989, 264, 66936698
  9. O'Brien, T.; Hardin, S.; Greenleaf, A.; Lis, J. T. Nature 1994, 370, 75-77 https://doi.org/10.1038/370075a0
  10. Collet, J. F.; Stroobant, V.; Pirard, M.; Delpierre, G.; Van Schaftingen, E. J. Biol. Chem. 1998, 273, 14107-14112 https://doi.org/10.1074/jbc.273.23.14107
  11. Yeo, M.; Lin, P. S.; Dahmus, M. E.; Gill, G. N. J. Biol. Chem. 2003, 278, 26078-26085 https://doi.org/10.1074/jbc.M301791200
  12. Zheng, H.; Ji, C.; Gu, S.; Shi, B.; Wang, J.; Xie, Y.; Mao, Y. Biochem. Biophys. Res. Commun. 2005, 331, 1401-1407 https://doi.org/10.1016/j.bbrc.2005.04.065
  13. Ciechanover, A. EMBO Journal 1998, 17, 7151-7160 https://doi.org/10.1093/emboj/17.24.7151
  14. Hershko, A. Cell Death and Differentiation 2005, 12, 1191- 1197 https://doi.org/10.1038/sj.cdd.4401702
  15. Jentsch, S.; Pyrowolakis, G. Trends Cell Biol. 2000, 10, 335- 342 https://doi.org/10.1016/S0962-8924(00)01785-2
  16. Elsasser, S.; Gali, R. R.; Schwickart, M.; Larsen, C. N.; Leggett, D. S.; Muller, B.; Feng, M. T.; Tubing, F.; Dittmar, G. A.; Finley, D. Nat. Cell Biol. 2002, 4, 725-730 https://doi.org/10.1038/ncb845
  17. Sakata, E.; Yamaguchi, Y.; Kurimoto, E.; Kikuchi, J.; Yokoyama, S.; Yamada, S.; Kawahara, H.; Yokosawa, H.; Hattori, N.; Mizuno, Y.; Tanaka, K.; Kato, K. EMBO Rep. 2003, 4, 301-306 https://doi.org/10.1038/sj.embor.embor764
  18. Pervushin, K.; Riek, R.; Wider, G.; Wüthrich, K. Proc. Natl. Acad. Sci. USA 1997, 94, 12366-12371 https://doi.org/10.1073/pnas.94.23.12366
  19. Bodenhausen, G.; Ruben, D. J. Chem. Phys. Lett. 1980, 69, 185-189 https://doi.org/10.1016/0009-2614(80)80041-8
  20. Salzmann, M.; Wider, G.; Pervushin, K.; Senn, H.; Wüthrich, K. Journal of the American Chemical Society 1999, 121, 844-848 https://doi.org/10.1021/ja9834226
  21. Delaglio, F.; Grzesiek, S.; Vuister, G. W.; Zhu, G.; Pfeifer, J.; Bax, A. J. Biomol. NMR 1995, 6, 277-293
  22. Hochuli, M.; Szyperski, T.; Wüthrich, K. Journal of Biomolecular NMR 2000, 17, 33-42 https://doi.org/10.1023/A:1008329124672

Cited by

  1. Solution Structure and Rpn1 Interaction of the UBL Domain of Human RNA Polymerase II C-Terminal Domain Phosphatase vol.8, pp.5, 2013, https://doi.org/10.1371/journal.pone.0062981