DOI QR코드

DOI QR Code

Facile and Room Temperature Preparation and Characterization of PbS Nanoparticles in Aqueous [EMIM][EtSO4] Ionic Liquid Using Ultrasonic Irradiation

  • Behboudnia, M. (Department of Physics, Urmia University of Technology) ;
  • Habibi-Yangjeh, A. (Department of Chemistry, University of Mohaghegh Ardabili) ;
  • Jafari-Tarzanag, Y. (Department of Chemistry, University of Mohaghegh Ardabili) ;
  • Khodayari, A. (Department of Chemistry, University of Mohaghegh Ardabili)
  • Published : 2009.01.20

Abstract

At room-temperature, a facile, seedless, and environmentally benign green route for the synthesis of star like PbS nanoclusters at 7 min in aqueous solution of 1-ethyl-3-methylimidazolium ethyl sulfate, [EMIM] [$EtSO_{4}$], room-temperature ionic liquid (RTIL), via ultrasonic irradiation is proposed. The X-ray diffraction studies display that the products are excellently crystallized in the form of cubic structure. An energy dispersive X-ray spectroscopy (EDX) investigation reveals the products are extremely pure. The absorption spectra of the product exhibit band gap energy of about 4.27 eV which shows an enormous blue shift of 3.86 eV that can be attributed to very small size of PbS nanoparticles produced and quantum confinement effect. A possible formation mechanism of the PbS nanoparticles using ultrasonic irradiation in aqueous solution of the RTIL is presented.

Keywords

References

  1. Machol, J. L.; Wise, F. W.; Patel, R. C.; Tanner, D. B. Phys. Rev. B 1993, 48, 2819 https://doi.org/10.1103/PhysRevB.48.2819
  2. Gadenne, P.; Yagil, Y.; Deutscher, G. J. Appl. Phys. 1989, 66, 3019 https://doi.org/10.1063/1.344187
  3. Kane, R. S.; Cohen, R. E.; Silbey, R. J. Phys. Chem. 1996, 100, 7928 https://doi.org/10.1021/jp952869n
  4. Kumar, S.; Khan, Z. H.; Khan, M. A. M.; Husain, M. Curr. Appl. Phys. 2005, 5, 561 https://doi.org/10.1016/j.cap.2004.07.001
  5. Ichimura, M.; Narita, T.; Masui, M. Mater. Sci. Eng. B 2002, 96, 296 https://doi.org/10.1016/S0921-5107(02)00382-3
  6. Yang, Y. J.; He, L. Y.; Zhang, Q. F. Electrochem. Commun. 2005, 7, 361 https://doi.org/10.1016/j.elecom.2005.02.005
  7. Suslick, K. S.; Choe, S. B.; Cichowals, A. A.; Grinstaff, M. W. Nature 1991, 353, 414 https://doi.org/10.1038/353414a0
  8. Behboudnia, M.; Majlesara, M. H.; Khanbabaee, B. Mater. Sci. Eng. B 2005, 122, 160 https://doi.org/10.1016/j.mseb.2005.05.001
  9. Behboudnia, M.; Khanbabaee, B. Colloid Surf. A 2006, 290, 229 https://doi.org/10.1016/j.colsurfa.2006.05.027
  10. Behboudnia, M.; Khanbabaee, B. J. Crys. Growth 2007, 304, 158 https://doi.org/10.1016/j.jcrysgro.2007.02.016
  11. Welton, T. Coord. Chem. Rev. 2004, 248, 2459 https://doi.org/10.1016/j.ccr.2004.04.015
  12. Harifi-Mood, A. R.; Habibi-Yangjeh, A.; Gholami, M. R. J. Phys. Chem. B 2006, 110, 7073 https://doi.org/10.1021/jp0602373
  13. Harifi-Mood, A. R.; Habibi-Yangjeh, A.; Gholami, M. R. Int. J. Chem. Kinet. 2007, 39, 681 https://doi.org/10.1002/kin.20282
  14. Khodadadi-Moghaddam, M.; Habibi-Yangjeh, A.; Gholami, M. R. App. Catal. A: Gen. 2008, 341, 58 https://doi.org/10.1016/j.apcata.2008.02.002
  15. Parvulescu, V. I.; Hardacre, C. Chem. Rev. 2007, 107, 2615 https://doi.org/10.1021/cr050948h
  16. Zhang, Z. C. Adv. Catal. 2006, 49, 153 https://doi.org/10.1016/S0360-0564(05)49003-3
  17. Wang, Y.; Yang, H. J. Am. Chem. 2005, 127, 5316 https://doi.org/10.1021/ja043625w
  18. Jiang, Y.; Zhu, Y.-J. J. Phys. Chem. B 2005, 109, 4361 https://doi.org/10.1021/jp044350+
  19. Jacob, D. S.; Bitton, L.; Grinblat, J.; Felner, I.; Koltypin, Y.; Gedanken, A. Chem. Mater. 2006, 18, 3162 https://doi.org/10.1021/cm060782g
  20. Meciarova, M.; Toma, S. Chem. Eur. J. 2007, 13, 1268 https://doi.org/10.1002/chem.200600870
  21. Zhai, Y.; Gao, Y.; Liu, F.; Zhang, Q.; Gao, G. Mater. Lett. 2007, 61, 5056 https://doi.org/10.1016/j.matlet.2007.04.002
  22. Yu, N.; Gong, L.; Song, H.; Liu, Y.; Yin, D. J. Solid State Chem. 2007, 180, 799 https://doi.org/10.1016/j.jssc.2006.11.008
  23. Farag, H. K.; Endres, F. J. Mater. Chem. 2008, 18, 442 https://doi.org/10.1039/b711704c
  24. Mumalo-Djokic, D.; Stern, W. B.; Taubert, A. Crys. Growth Des. 2008, 8, 330 https://doi.org/10.1021/cg0701372
  25. Ma, L.; Chen, W.-X.; Li, H.; Zheng, Y.-F.; Xu, Z.-D. Mater. Lett. 2008, 62, 797 https://doi.org/10.1016/j.matlet.2007.06.062
  26. Keskin, S.; Kayrak-Talay, D.; Akman, U.; Hortacsu, O. J. Supercritical Fluids 2007, 43, 150 https://doi.org/10.1016/j.supflu.2007.05.013
  27. Lee, S. Chem. Commun. 2006, 1049
  28. Najdanovic-Visak, V.; Esperanca, J. M. S. S.; Rebelo, L. P. N.; Ponte, M. N.; Guedes, H. J. R.; Seddon, K. R.; Szydlowski, J. Phys. Chem. Chem. Phys. 2002, 4, 1701 https://doi.org/10.1039/b201723g
  29. Cammarata, L.; Kazarian, S. G.; Salter, P. A.; Welton, T. Phys. Chem. Chem. Phys. 2001, 23, 5192
  30. Wasserscheid, P.; Hal, R.; Bosmann, A. Green Chem. 2002, 4, 400 https://doi.org/10.1039/b205425f
  31. Chiappe, C.; Pieraccini, D. J. Phys. Org. Chem. 2005, 18, 275 https://doi.org/10.1002/poc.863
  32. Holbrey, J. D.; Reichert, W. M.; Swatloski, R. P.; Broker, G. A.; Pitner, W. R.; Seddon, K. R.; Rogers, R. Green Chem. 2002, 4, 407 https://doi.org/10.1039/b204469b
  33. Gomez, E.; Gonzalez, B.; Calvar, N.; Tojo, E.; Dominguez, A. J. Chem. Eng. Data 2006, 51, 2096 https://doi.org/10.1021/je060228n
  34. Cullity, B. D. Elements of X-ray Diffraction, 2nd ed; London: Addision Wesley, 1978l
  35. Moffitt, M.; Eisenberg, A. Chem. Mater. 1995, 7, 1178 https://doi.org/10.1021/cm00054a017
  36. Wang, Y.; Suna, A.; Mahler, W.; Kasowski, R. J. Chem. Phys. 1987, 87, 7315 https://doi.org/10.1063/1.453325
  37. Watzke, H. J.; Fendler, J. H. J. Phys. Chem. 1987, 91, 854 https://doi.org/10.1021/j100288a019
  38. Biswas, K.; Rao, C. N. R. Chem. Eur. J. 2007, 13, 6123 https://doi.org/10.1002/chem.200601733
  39. Wang, L.; Chang, L.; Zhao, B.; Yuan, Z.; Shao, G.; Zheng, G. Inorg. Chem. 2008, 47, 1443 https://doi.org/10.1021/ic701094a
  40. Hou, X.; Zhou, F.; Sun, Y.; Liu, W. Mater. Lett. 2007, 61, 1789 https://doi.org/10.1016/j.matlet.2006.07.133

Cited by

  1. ] as a low-cost ionic liquid, and its characterization and photocatalytic properties vol.206, pp.11, 2009, https://doi.org/10.1002/pssa.200925151
  2. A greener route to photoelectrochemically active PbS nanoparticles vol.20, pp.12, 2010, https://doi.org/10.1039/b924436k
  3. Direct Preparation of Sulfide Semiconductor Nanoparticles from the Corresponding Bulk Powders in an Ionic Liquid vol.124, pp.6, 2009, https://doi.org/10.1002/ange.201106546
  4. Direct Preparation of Sulfide Semiconductor Nanoparticles from the Corresponding Bulk Powders in an Ionic Liquid vol.51, pp.6, 2009, https://doi.org/10.1002/anie.201106546
  5. Ultrasound-assisted synthesis of PbS quantum dots stabilized by 1,2-benzenedimethanethiol and attachment to single-walled carbon nanotubes vol.21, pp.2, 2014, https://doi.org/10.1016/j.ultsonch.2013.08.025
  6. Ionic liquid-assisted sonochemical synthesis of SnS nanostructures vol.588, pp.None, 2009, https://doi.org/10.1016/j.jallcom.2013.11.051
  7. Ionic liquid/surfactant-hydrothermal synthesis of dendritic PbS@CuS core-shell photocatalysts with improved photocatalytic performance vol.546, pp.None, 2009, https://doi.org/10.1016/j.apsusc.2021.149106