DOI QR코드

DOI QR Code

Immobilization of Hansenula polymorpha Alcohol Oxidase for Alcohol Biosensor Applications

  • Chung, Hyun-Jung (Department of Chemistry, College of Natural Sciences, Chung-Ang University) ;
  • Cho, Hyun-Young (Department of Chemistry, College of Natural Sciences, Chung-Ang University) ;
  • Kong, Kwang-Hoon (Department of Chemistry, College of Natural Sciences, Chung-Ang University)
  • Published : 2009.01.20

Abstract

Alcohol oxidase catalyzes the oxidation of short lines alcohol to aldehyde. In this study, alcohol oxidase from Hansenula polymorpha (HpAOD) was induced by addition of 0.5% methanol as the carbon source and purified to electrophoretic homogeneity by column chromatographies. The purified HpAOD was immobilized with DEAE-cellulose particles and its biochemical properties were compared with those of free enzyme. The substrate specificity and the optimum pH of immobilized enzyme were similar to those of free enzyme. On the other hand, the Km values of free and immobilized enzymes for ethanol were 6.66 and 14.65 mM, respectively. The optimum temperature for free enzyme was ${50^{\circ}C}$, whereas that for immobilized enzyme was ${65^{\circ}C}$. Immobilized enzyme showed high stability against long storage. Immobilized enzyme was also tested for the enzymatic determination of ethanol by the colorimetric method. We detected 1 mg/liter ethanol ($1{\times}10^{-4}$% ethanol) by 2,6- dichloroindophenol system. Therefore, the present study demonstrated that immobilized HpAOD has high substrate specificity toward ethanol and storage stability, which may be of considerable interest for alcohol biosensor and industrial application.

Keywords

References

  1. Vonck, L.; van Bruggen, E. F. J. Biochim. Biophys. Acta 1990, 1038, 74 https://doi.org/10.1016/0167-4838(90)90012-5
  2. de Hoop, M.; Asgeirsdottir, S.; Blaauw, M.; Veenhuis, M.; Cregg, J.; Gleeson, M.; Ab, G. Protein Eng. 1991, 4, 821 https://doi.org/10.1093/protein/4.7.821
  3. Azevedo, A. M.; Cabral, J. M. S.; Gibson, T. D.; Fonseca, L. P. J. Mol. Catal. B: Enzym. 2004, 28, 45 https://doi.org/10.1016/j.molcatb.2004.01.001
  4. Liden, H.; Vijayakumar, A. R.; Gorton, L.; Marko-Varga, G. J. Pharm. Biomed. 1998, 17, 1111 https://doi.org/10.1016/S0731-7085(98)00077-6
  5. Yarita, T.; Nakajima, R.; Otsuka, S.; Ihara, T.; Takatsu, A.; Shibukawa, M. J. Chromatogr. A 2002, 976, 387 https://doi.org/10.1016/S0021-9673(02)00942-1
  6. Patel, N. G.; Meier, S.; Camman, K.; Chemnitius, G. C. Sens. Actuators B: Chem. 2001, 75, 101 https://doi.org/10.1016/S0925-4005(01)00545-7
  7. Hagemeyer, H. J. Acetaldehyde in Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed.; Kroschwitz, J. I.; Howe-Grant, M., Eds.; John Wiley & Sons: New York, 1991; Vol. 1, p 94
  8. Welsh, F. W.; Murray, W. D.; Williams, R. E. Crit. Rev. Biotechnol. 1989, 9, 105 https://doi.org/10.3109/07388558909040617
  9. Murray, W. D.; Duff, S. J. B.; Lantier, P. H.; Armstrong, D. W.; Welsh, F. W.; Williams, R. E. Dev. Food Sci. 1988, 17, 1
  10. Woodward, J. R. In Autotrophic Microbiology and One-carbon Metabolism; Codd, G. A.; Dijkhuizen, L.; Tabita, F. R., Eds.; Dordrecht: Kluwer, 1990; p 193
  11. Sakai, Y.; Tani, Y. Agric. Biol. Chem. 1987, 51, 2617 https://doi.org/10.1271/bbb1961.51.2617
  12. Tani, Y. In Biology of Methylotrophs; Goldberg, I., Rokem, J. S., Eds.; Boston: Butterworth-Heinemann, 1991; p 253
  13. Isik, S.; Alkan, S.; Toppare, L.; Cianga, I.; Yagci, Y. Eur. Polym. J. 2003, 39, 2375 https://doi.org/10.1016/S0014-3057(03)00184-8
  14. Przybyt, M.; Bialkowska, B. Master. Sci. 2002, 20, 63
  15. Guzman-Vazquez de Prada, A.; Pena, N.; Parrado, C.; Reviejo, A. J.; Pingarron, J. M. Talanta 2004, 62, 896 https://doi.org/10.1016/j.talanta.2003.10.013
  16. Patel, N. G.; Meier, S.; Cammann, K.; Chemnitius, G. C. Sens. Actuators B: Chem. 2001, 75, 101 https://doi.org/10.1016/S0925-4005(01)00545-7
  17. Rezaei-Zarchi, S.; Saboury, A. A.; Hong, J.; Norouzi, P.; Moghaddam, A. B.; Ghourchian, H.; Ganjal, M. R.; Moosavi-Movahedi, A. A.; Javed, A.; Mohammadian, A. Bull. Korean Chem. Soc. 2007, 28, 2266 https://doi.org/10.5012/bkcs.2007.28.12.2266
  18. Tiller, J. C.; Rieseler, R.; Berlin, P.; Klemm, D. Biomacromolecules 2002, 3, 1021 https://doi.org/10.1021/bm020041i
  19. Tani, Y.; Sakai, Y.; Yamada, H. Agric. Biol. Chem. 1985, 49, 2699 https://doi.org/10.1271/bbb1961.49.2699
  20. Lineweaver, H.; Burk, D. J. Am. Chem. Soc. 1934, 56, 658 https://doi.org/10.1021/ja01318a036
  21. Koh, J. U.; Cho, H. Y.; Kong, K. H. Bull. Korean Chem. Soc. 2007, 28, 772 https://doi.org/10.5012/bkcs.2007.28.5.772
  22. Bradford, M. M. Anal. Biochem. 1976, 72, 248 https://doi.org/10.1016/0003-2697(76)90527-3
  23. Hopkins, T. R.; Muller, F. In Microbial Growth on C1 Compounds; Van Verseveld, H. W.; Duine, J. A., Eds.; 1987; p150
  24. Barzana, E.; Klibanov, A. M.; Karel, M. Anal. Biochem. 1989, 182, 109 https://doi.org/10.1016/0003-2697(89)90726-4
  25. Mohr, G. J.; Citterio, D.; Spichiger-Keller, U. E. Sens. Actuators B 1998, 49, 226 https://doi.org/10.1016/S0925-4005(98)00132-4
  26. Matsumoto, K.; Matsubara, H.; Hamada, M.; Ukeda, H.; Osajima, Y. J. Biotech. 1990, 14, 115 https://doi.org/10.1016/0168-1656(90)90023-5

Cited by

  1. Current awareness on yeast vol.26, pp.8, 2009, https://doi.org/10.1002/yea.1623
  2. Aryl Azide-Based Photografting of β-Cyclodextrin onto Cellulose Diacetate Fibers vol.30, pp.8, 2009, https://doi.org/10.5012/bkcs.2009.30.8.1851