DOI QR코드

DOI QR Code

Copper(II) Coordination Polymers Assembled from 2-[(Pyridin-3-ylmethyl)amino]ethanol: Structure and Magnetism

  • Han, Jeong-Hyeong (Department of Chemistry Education, Kyungpook National University) ;
  • Shin, Jong-Won (Department of Chemistry, Kyungpook National University) ;
  • Min, Kil-Sik (Department of Chemistry Education, Kyungpook National University)
  • Published : 2009.05.20

Abstract

The one-dimensional coordination polymers, $[Cu^{II}(L)(NO_3)_2]_n$ (1) and {$[Cu^{II}(L)(NO_3)]{\cdot}2H_2O}_{2n} (2), were synthesized from $Cu(NO_3)_2{\cdot}3H_2O$ and 2-[(pyridin-3-ylmethyl)amino]ethanol (L, PMAE) in methanol by controlling the molar ratio of copper(II) salt. Copper(II) ion in 1 has one pyridine group of PMAE whose an aminoethanol group coordinates adjacent copper(II) ion. As the pyridine group is bonded to neighboring copper(II) ion, 1 becomes a one-dimensional chain. Contrary to 1, the structure of 2 shows that the oxygen atom of ethoxide group is bridged between two copper(II) ions, which forms a dinuclear complex. Additionally, the pyridine group of PMAE included one dinuclear unit is coordinated to the other dimeric one each other, which leads to a one-dimensional polymer. Due to the structural differences, 1 exhibits weak antiferromagnetic interaction, while 2 shows strong antiferromagnetic interaction. Due to direct spin exchange via oxygen of PMAE 2 has a much strong spin coupling than 1.

Keywords

References

  1. Fujita, W.; Awaga, K.; Kondo, R.; Kagoshima, S. J. Am. Chem. Soc. 2006, 128, 6016 https://doi.org/10.1021/ja060979+
  2. Shapiro, A.; Landee, C. P.; Turnbull, M. M.; Jornet, J.; Deumal, M.; Novoa, J. J.; Robb, M. A.; Lewis, W. J. Am. Chem. Soc. 2007, 129, 952 https://doi.org/10.1021/ja066330m
  3. Yi, L.; Yang, X.; Lu, T.; Cheng, P. Cryst. Growth Des. 2005, 5, 1215 https://doi.org/10.1021/cg049587+
  4. Withersby, M. A.; Blake, A. J.; Champness, N. R.; Cooke, P. A.; Hubberstey, P.; Li, W.; Schröder, M. Inorg. Chem. 1999, 38, 2259 https://doi.org/10.1021/ic980898h
  5. Kondo, M.; Shimamura, M.; Noro, S.-I.; Minakoshi, S.; Asami, A.; Seki, K.; Kitagawa, S. Chem. Mater. 2000, 12, 1288 https://doi.org/10.1021/cm990612m
  6. Ko, J. W.; Min, K. S.; Suh, M. P. Inorg. Chem. 2002, 41, 2151 https://doi.org/10.1021/ic011281u
  7. Choi, H. J.; Suh, M. P. J. Am. Chem. Soc. 1998, 120, 10622 https://doi.org/10.1021/ja980504l
  8. Bradshaw, D.; Claridge, J. B.; Cussen, E. J.; Prior, T. J.; Rosseinsky, M. J. Acc. Chem. Res. 2005, 38, 273 https://doi.org/10.1021/ar0401606
  9. Numata, Y.; Inoue, K.; Baranov, N.; Kurmoo, M.; Kikuchi, K. J. Am. Chem. Soc. 2007, 129, 9902 https://doi.org/10.1021/ja064828i
  10. Milon, J.; Daniel, M.-C.; Kaiba, A.; Guionneau, P.; Brandes, S.; Sutter, J.-P. J. Am. Chem. Soc. 2007, 129, 13872 https://doi.org/10.1021/ja073612t
  11. Ishii, N.; Okamura, Y.; Chiba, S.; Nogami, T.; Ishida, T. J. Am. Chem. Soc. 2008, 130, 24 https://doi.org/10.1021/ja077666e
  12. Yaghi, O. M.; Li, H. J. Am. Chem. Soc. 1996, 118, 295 https://doi.org/10.1021/ja953438l
  13. Bauer, C. A.; Timofeeva, T. V.; Settersten, T. B.; Patterson, B. D.; Liu, V. H.; Simmons, B. A.; Allendorf, M. D. J. Am. Chem. Soc. 2007, 129, 7136 https://doi.org/10.1021/ja0700395
  14. Gao, H.-L.; Yi, L.; Zhao, B.; Zhao, X.-Q.; Cheng, P.; Liao, D.-Z.; Yan, S.-P. Inorg. Chem. 2006, 45, 5980 https://doi.org/10.1021/ic060550j
  15. Chen, B.; Ji, Y.; Xue, M.; Fronczek, F. R.; Hurtado, E. J.; Mondal, J. U.; Liang, C.; Dai, S. Inorg. Chem. 2008, 47, 5543 https://doi.org/10.1021/ic8004008
  16. Strauss, S. H. Chem. Rev. 1993, 93, 927 https://doi.org/10.1021/cr00019a005
  17. Lankshear, M. D.; Beer, P. D. Acc. Chem. Res. 2007, 40, 657 https://doi.org/10.1021/ar7000217
  18. Kang, S. O.; Begum, R. A.; Bowman-James, K. Angew. Chem. Int. Ed. 2006, 45, 7882 https://doi.org/10.1002/anie.200602006
  19. Schurke, P.; Freeman, J. C.; Dabrowski, M. J.; Atkins, W. M. J. Biol. Chem. 1999, 274, 27963 https://doi.org/10.1074/jbc.274.39.27963
  20. Burchell, T. J.; Puddephatt, R. J. Inorg. Chem. 2005, 44, 3718 https://doi.org/10.1021/ic050097w
  21. Sun, S.-S.; Stern, C. L.; Nguyen, S. T.; Hupp, J. T. J. Am. Chem. Soc. 2004, 126, 6314 https://doi.org/10.1021/ja037378s
  22. Lee, J. W.; Kim, E. A.; Kim, Y. J.; Lee, Y. A.; Park, Y.; Jung, O.-S. Inorg. Chem. 2005, 44, 3151 https://doi.org/10.1021/ic048537r
  23. Curtis, N. F.; Einstein, F. W. B.; Morgan, K. R.; Willis, A. C. Inorg. Chem. 1985, 24, 2026 https://doi.org/10.1021/ic00207a015
  24. Li, G.; Qian, X.; Cui, J.; Huang, Q.; Cui, D.; Zhang, R.; Liu, F. J. Fluor. Chem. 2006, 127, 182 https://doi.org/10.1016/j.jfluchem.2005.10.016
  25. Saint Plus, v. 6.02; Bruker Analytical X-ray: Madison, WI, 1999
  26. Sheldrick, G. M. Acta Crystallogr., Sect. A 1990, 46, 467 https://doi.org/10.1107/S0108767390000277
  27. Sheldrick, G. M. SHELXL97: Program for the Crystal Structure Refinement; University of Gottingen: Germany, 1997
  28. Spek, A. L. J. Appl. Crystallogr. 2003, 36, 7 https://doi.org/10.1107/S0021889802022112
  29. Desiraju, G. R. Angew. Chem. Int. Ed. Engl. 1995, 34, 2311 https://doi.org/10.1002/anie.199523111
  30. Aaker$\ddot{o}$y, C. B. Acta Cryst. 1997, B53, 569
  31. Archer, E. A.; Sochia, A. E.; Krische, M. J. Chem. Eur. J. 2001, 7, 2059 https://doi.org/10.1002/1521-3765(20010518)7:10<2059::AID-CHEM2059>3.0.CO;2-I
  32. Desiraju, G. R. Crystal Engineering: The Design of Organic Solids; Elsevier: New York, 1989; chap. 4
  33. Shetty, A. S.; Zhang, J.; Moore, J. S. J. Am. Chem. Soc. 1996, 118, 1019 https://doi.org/10.1021/ja9528893
  34. Jennings, W. B.; Farrell, B. M.; Malone, J. F. Acc. Chem. Res. 2001, 34, 885 https://doi.org/10.1021/ar0100475
  35. Bonner, J. C.; Fisher, M. E. Phys. Rev. 1964, A135, 640
  36. Estes, G. A.; Gavel, D. P.; Hatfield, W. E.; Hodgson, D. J. Inorg. Chem. 1978, 17, 1415 https://doi.org/10.1021/ic50184a005
  37. Bleaney, B.; Bowers, K. D. Proc. Roy. Soc. (London) Ser. A 1952, 214, 451 https://doi.org/10.1098/rspa.1952.0181
  38. Kahn, O. Molecular Magnetism; VCH: New York, 1993; pp 159-164
  39. Ruiz, E.; de Graaf, C.; Alemany, P.; Alvarez, S. J. Phys. Chem. A 2002, 106, 4938 https://doi.org/10.1021/jp015565b

Cited by

  1. Monomeric, trimeric, and tetrameric transition metal complexes (Mn, Fe, Co) containing N,N-bis(2-pyridylmethyl)-2-aminoethanol/-ate: preparation, crystal structure, molecular magnetism and oxidation catalysis vol.40, pp.21, 2011, https://doi.org/10.1039/c1dt10028a
  2. Synthesis, Crystal structure, and Magnetic Properties of Dinuclear Iron(III) Complexes with Methoxo Bridges vol.31, pp.12, 2009, https://doi.org/10.5012/bkcs.2010.31.12.3617
  3. Preparation and Characterization of Anion-Dependent Octahedral Nickel(II) Geometric Isomers vol.35, pp.1, 2009, https://doi.org/10.5012/bkcs.2014.35.1.273