DOI QR코드

DOI QR Code

Novel Fabrication of CdS Hollow Spheres Induced by Self-assembled Process

  • Choi, Kyoung-Hoon (Photon Applied Functional Molecule Research Laboratory, Department of Chemistry, Yonsei University) ;
  • Chae, Weon-Sik (Korea Basic Science Institute, Gangneung Center) ;
  • Jung, Jin-Seung (Department of Chemistry, Kangnung National University) ;
  • Kim, Yong-Rok (Photon Applied Functional Molecule Research Laboratory, Department of Chemistry, Yonsei University)
  • Published : 2009.05.20

Abstract

Micro-size CdS spheres of hollow shape were fabricated through the self-assembly of high density arrow-like nanorods. The synthesis of the CdS hollow spheres were accomplished in an aqueous solution of cadmium nitrate and triblock copolymer (Pluronic P123) at low temperature (80 ${^{\circ}C}$) through the slow release of S2- ions from thioacetamide. Morphology of the fabricated CdS hollow spheres was characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The results indicate that the arrow-like CdS nanorods are simultaneously grown and attached each other to form the building units that become the spheres with hollow inside as a self-assembled process. The CdS spheres have a diameter of $2{\sim}3 {\mu}m$ and consist of the nanorods with a length of$\sim$800 nm. The nanocrystal building blocks have a hexagonal CdS structure.

Keywords

References

  1. Li, M.; Schnablegger, H.; Mann, S. Nature 1999, 402, 393 https://doi.org/10.1038/46509
  2. Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Nature 2000, 404, 59 https://doi.org/10.1038/35003535
  3. Ahmadi, T. S.; Wang, Z. L.; Green, T. C.; Henglein, A.; Elsayed, M. A. Science 1996, 272, 1924 https://doi.org/10.1126/science.272.5270.1924
  4. Cho, Y.-G.; Choi, K.-H.; Kim, Y.-R.; Jung, J.-S.; Lee, S.-H. Bull. Kor. Chem. Soc. 2009, in press
  5. Caruso, F. Adv. Mater. 2001, 13, 11 https://doi.org/10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO;2-N
  6. Burda, C.; Chen, X.; Narayanan, R.; Elsayed, M. A. Chem. Rev. 2005, 105, 1025 https://doi.org/10.1021/cr030063a
  7. Liu, B.; Zeng, H. C. J. Am. Chem. Soc. 2004, 126, 8124 https://doi.org/10.1021/ja048195o
  8. An, B.-I.; Ryu, K.-H.; Kim, Y.-R.; Lee, S.-H. Bull. Kor. Chem. Soc. 2007, 28, 1049 https://doi.org/10.5012/bkcs.2007.28.6.1049
  9. Chae, W.-S.; Shin, H.-W.; Lee, E.-S.; Shin, E.-J.; Jung, J.-S.; Kim, Y.-R. J. Phys. Chem. B 2005, 109, 6204 https://doi.org/10.1021/jp044402v
  10. Chae, W.-S.; Lee, S.-W.; Kim, Y.-R. Chem. Mater. 2005, 17, 3072 https://doi.org/10.1021/cm050603f
  11. Chae, W.-S.; Lee, S.-W.; An, M.-J.; Choi, K.-H.; Moon, S.-W.; Zin, W.-C.; Jung, J.-S.; Kim, Y.-R. Chem. Mater. 2005, 17, 5651 https://doi.org/10.1021/cm050839j
  12. Ma, Y.; Qi, L.; Ma, J.; Cheng, H. Langmuir 2003, 19, 4040 https://doi.org/10.1021/la026997w
  13. Zhong, Z.; Yin, Y.; Gates, B.; Xia, Y. Adv. Mater. 2000, 12, 206 https://doi.org/10.1002/(SICI)1521-4095(200002)12:3<206::AID-ADMA206>3.0.CO;2-5
  14. Kim, S.-W.; Kim, M.; Lee, W. Y.; Hyeon, T. J. Am. Chem. Soc. 2002, 124, 7642 https://doi.org/10.1021/ja026032z
  15. McKelvey, C. A.; Kaler, E. W.; Zasadzinski, J. A.; Coldren, B.; Jung, H. T. Langmuir 2000, 16, 8285 https://doi.org/10.1021/la000569d
  16. Hotz, J.; Meier, W. Adv. Mater. 1998, 10, 1387 https://doi.org/10.1002/(SICI)1521-4095(199811)10:16<1387::AID-ADMA1387>3.0.CO;2-3
  17. Walsh, D.; Hopwood, J. D.; Mann, S. Science 1994, 264, 1576 https://doi.org/10.1126/science.264.5165.1576
  18. Ohmori, M.; Matijevic, E. J. Colloid Interface Sci. 1992, 150, 594 https://doi.org/10.1016/0021-9797(92)90229-F
  19. Sims, S. D.; Walsh, D.; Mann, S. Adv. Mater. 1998, 10, 151 https://doi.org/10.1002/(SICI)1521-4095(199801)10:2<151::AID-ADMA151>3.0.CO;2-U
  20. Mandal, T. K.; Fleming, M. S.; Walt, D. R. Chem. Mater. 2000, 12, 3481 https://doi.org/10.1021/cm000514x
  21. Caruso, F.; Spasova, M.; Susha, A.; Giersig, M.; Caruso, R. A. Chem. Mater. 2001, 13, 109 https://doi.org/10.1021/cm001164h
  22. Yang, C. S.; Awschalom, D. D.; Stucky, G. D. Chem. Mater. 2002, 14, 1277 https://doi.org/10.1021/cm011227b
  23. Zhang, J. Z. Acc. Chem. Res. 1997, 30, 423 https://doi.org/10.1021/ar960178j
  24. Kayanuma, Y. Phys. Rev. B 1988, 38, 9797 https://doi.org/10.1103/PhysRevB.38.9797
  25. O'Neil, M.; Marohn, J.; McLendon, G. J. Phys. Chem. 1990, 94, 4356 https://doi.org/10.1021/j100373a089
  26. Chae, W.-S.; Ko, J.-H.; Hwang, I.-W.; Kim, Y.-R. Chem. Phys. Lett. 2002, 365, 49 https://doi.org/10.1016/S0009-2614(02)01418-5

Cited by

  1. From CdS aggregate spheres to PbS hollow spheres: a case study of the growth mechanism in chemical conversion vol.46, pp.10, 2011, https://doi.org/10.1007/s10853-010-5223-8
  2. Facile preparation and visible light photocatalytic activity of CdIn2S4 monodispersed spherical particles vol.513, pp.None, 2009, https://doi.org/10.1016/j.jallcom.2011.10.105