DOI QR코드

DOI QR Code

Synthesis and Fragmentation of Furoxanaldehydes in the Gas Phase for Nanopatterned Alkyne Formation on a Solid Surface

  • Kim, Gi-Young (Department of Chemical System Engineering, Hongik University) ;
  • Kim, Ju-Cheon (Department of Chemical System Engineering, Hongik University) ;
  • Lee, Seung-Hee (Department of Chemical System Engineering, Hongik University) ;
  • Kim, Hyung-Jin (Center for Functional Nano Fine Chemicals, School of Applied Chemical Engineering, Chonnam National University) ;
  • Hwang, Kwang-Jin (Department of Chemical System Engineering, Hongik University)
  • Published : 2009.02.20

Abstract

Furoxanaldehydes possessing phenyl or alkenyl groups at the 3- or 4-position of the furoxan ring were designed for alkyne formation on a solid surface. Furoxans 2 and 3 were prepared from the corresponding alkenes 2a and 3a by the reaction with NaN$O_2$ in acetic acid. Furoxan 4, in which the furoxan ring is conjugated with a double bond, was prepared from bis(bromomethyl)benzene 4a in 5 steps using the Wittig reaction of aldehyde 1 as the key step. The electron beam-mediated fragmentation of furoxanaldehydes 1-4 in a mass spectrometer was exploited by focusing on alkyne formation on the solid surface. The fragmentation of furoxan 3 possessing diaryl groups afforded diarylacetylene at high efficiency, suggesting that the aryl group conjugated with the furoxan ring could facilitate alkyne formation with the evolution of NO.

Keywords

References

  1. Zhang, Y.; Luo, S.; Tang, Y.; Yi, L.; Hou, K. Y.; Cheng, J. P.;Zeng, X.; Wang, P. G. Anal. Chem. 2006, 78, 2001. https://doi.org/10.1021/ac051919+
  2. Sun, X. L.; Stabler, C. L.; Cazalis, C. S.; Chaikof, E. L.Bioconjugate Chem. 2006, 17, 52. https://doi.org/10.1021/bc0502311
  3. Lee, J. K.; Chi, Y. S.; Choi, I. S. Langmuir 2004, 20, 3844. https://doi.org/10.1021/la049748b
  4. Nandivada, H.; Chen, H.-Y.; Bondarenko, L.; Lehann, J. Angew. Chem. 2006, 45, 3360. https://doi.org/10.1002/anie.200600357
  5. Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem. Int. Ed. 2001, 40, 2004 https://doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
  6. Zhao, Y. B.; Yan, Z. Y.; Liang, Y. M. Tetrahedron Lett. 2006, 47, 1545. https://doi.org/10.1016/j.tetlet.2006.01.004
  7. Murcia, M. J.; Naumann, C. A. Biofunctionalization of Fluorescent Nanoparticles in Biofunctionalization of Nanomaterials;Kumar, C., Ed.; WILEY-VCH Verlag GmbH & Co. KGaA:Weinheim, Germany, 2005; Chap 1, p 1.
  8. Meziani, M. J.; Lin, Y.; Sun, Y. P. Conjugation of Nanomaterials with Proteins in Biofunctionalization of Nanomaterials; Kumar, C., Ed.; WILEYVCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2005;Chap 7, p 183.
  9. He, P.; Dai, L. Carbon Nanotube Biosensors in Biological and Biomedical Nanotechnology; Lee, A. P.; Lee, L. J.; Ferrari, M.,Eds.; Springer cience+Business Media, LCC: New York, 2006;Chap 6, p 171.
  10. Soellner, M. B.; Dickson, B. L.; Nilsson, R. T. J. Am. Chem. Soc. 2003, 125, 11790. https://doi.org/10.1021/ja036712h
  11. Cui, Y.; Wei, Q.; Park, H.; Lieber, C. M. Science 2001, 293, 1289. https://doi.org/10.1126/science.1062711
  12. Moncada, S.; Palmer, R. M. J.; Higgs, E. A. Pharmacol. Rev. 1991, 43, 109
  13. Palmer, R. M. J.; Ferrige, A. G.; Moncada, S. Nature 1987, 327, 524 https://doi.org/10.1038/327524a0
  14. Furchagott, R. F.; Zawadzki, J. V. Nature 1980, 288, 373. https://doi.org/10.1038/288373a0
  15. Sexton, D. J.; Muruganandam, A.; Mckenney, D. J.; Mutus, B. Photochem. Photobiol. 1994, 59, 463 https://doi.org/10.1111/j.1751-1097.1994.tb05065.x
  16. Nathan, C. F.; Hibbs Jr., J. B. Curr. Opin. Immunol. 1991, 3, 65 https://doi.org/10.1016/0952-7915(91)90079-G
  17. Marletta, M. A.;Yoon, P. S.; Lyengar, R.; Leaf, C. D.; Wishnok, J. S.Biochemistry 1988, 27, 8706. https://doi.org/10.1021/bi00424a003
  18. Hibbs Jr., J. B.; Vavrin, Z.; Taintor, R. R. J. Immunol. 1987, 138, 550.
  19. Montague, P. R.; Gancayco, C. D.; Winn, M. J.; Marchase, R. B.; Friedlander, M. J. Science 1994, 263, 973. https://doi.org/10.1126/science.7508638
  20. Snyder, S. H. Science 1992, 257, 494. https://doi.org/10.1126/science.1353273
  21. Curran, D. P.; Fenk, C. J. Am. Chem. Soc. 1985, 107, 6023. https://doi.org/10.1021/ja00307a031
  22. Mitchell, W. R.; Paton, R. M. Tetrahedron Lett. 1979, 2443.
  23. Hwang, K.-J.; Kim, S. K.; Shim, S. C. Chem. Lett. 1998, 8, 859. https://doi.org/10.1016/S0960-894X(98)00123-1
  24. Hwang, K.-J.; Jo, I.; Shin, Y. A.; Yoo, S.; Lee, J. H. Tetrahedron Lett. 1995, 36, 3337. https://doi.org/10.1016/0040-4039(95)00535-K
  25. Kim, C. O.; Jung, J. W.; Kim, M.; Kang, T. H.; Ihm, K.; Kim, K. J.; Kim, B.; Park, J. W.; Nam, H. W.; Hwang, K.-J. Langmuir 2003, 19, 4504. https://doi.org/10.1021/la026816q
  26. Jung, Y. J.; La, Y. H.; Kim, H. J.; Kang, T. H.; Ihm, K.; Kim, K. J.; Kim, B. S.; Park, J. W. Langmuir 2003, 19, 4512. https://doi.org/10.1021/la027059z
  27. La, Y. H.; Kim, H. J.; Maeng, I. S.; Jung, Y. J.; Park, J. W.; Kang, T. H.;Kim, K. J.; Ihm, K.; Kim, B. Langmuir 2002, 18, 301. https://doi.org/10.1021/la011360i
  28. Kim, G. Y. Synthesis of Furoxan Derivatives for Cleavage Reaction on Solid Surface, MS thesis; Hongik University:December, 2005.
  29. Heo, J.-M.; Kim, G. Y.; Hwang, K.-J. J. Korean Chem. Soc. 2007, 51, 160. https://doi.org/10.5012/jkcs.2007.51.2.160
  30. Calvino, R.; Gasco, A.; Menziani, E.; Serafino, A. J. Heterocyclic Chem. 1983, 20, 783 https://doi.org/10.1002/jhet.5570200355
  31. Fruttero, R.; Ferrarotti, B.; Serafino, A.; Stilo, A. D.; Gasco, A. J. Heterocyclic Chem. 1989, 26, 1345. https://doi.org/10.1002/jhet.5570260523
  32. Hwang, K.-J.; Park, Y. C.; Kim, H. J.; Lee, J. H. Biosci. Biotechnol. Biochem. 1998, 62, 1693 https://doi.org/10.1271/bbb.62.1693
  33. Hwang, K.-J.; Kang, H. Bull. Kor. Chem. Soc. 1998, 19, 506.
  34. Das, O.; Paria, S.; Paine, T. K. Tetrahedron Lett. 2008, 49, 5924. https://doi.org/10.1016/j.tetlet.2008.07.148
  35. Velazquez, C.; Rao, P. N. P.; McDonald, R.; Knaus, E. E. Bioorg. Med. Chem. 2005, 13, 2749. https://doi.org/10.1016/j.bmc.2005.02.034
  36. Mundy, B. P.; Ellerd, M. G. Name Reactions and Reagents in Organic Synthesis; Wiley: New York, 1988; pp 214-215.
  37. Witiak, D. T.; Williams, D. R.; Kakodkar, S. V.; Hite, G.; Shen, M.-S. J. Org. Chem. 1974, 39, 1242. https://doi.org/10.1021/jo00923a018
  38. Dambacher, J.; Zhao, W.; El-Batta, A.; Anness, R.; Jiang, C.;Bergdahl, M. Tetrahedron Lett. 2005, 46, 4473. https://doi.org/10.1016/j.tetlet.2005.04.105

Cited by

  1. Novel Nitric Oxide-Releasing Derivatives of Brusatol as Anti-Inflammatory Agents: Design, Synthesis, Biological Evaluation, and Nitric Oxide Release Studies vol.57, pp.18, 2014, https://doi.org/10.1021/jm5007534
  2. New thermally stable energetic materials: synthesis and characterization of guanylhydrazone substituted furoxan energetic derivatives vol.39, pp.1, 2015, https://doi.org/10.1039/C4NJ01175A
  3. Synthesis, characterization, and biological evaluation of furoxan coupled ibuprofen derivatives as anti-inflammatory agents vol.147, pp.3, 2016, https://doi.org/10.1007/s00706-015-1557-x
  4. Study on the Photoinduced Nitric-Oxide-Releasing Ability of 4-Alkoxy Furoxans vol.6, pp.5, 2017, https://doi.org/10.1002/ajoc.201700030
  5. Novel Energetic Compounds Based on 3-Methyl-1,2,5-Oxadiazole 2-Oxide pp.1545-8822, 2018, https://doi.org/10.1080/07370652.2017.1302519
  6. Extreme Ultraviolet-Induced Surface Modification of Self-Assembled Monolayers of Furoxans vol.113, pp.36, 2009, https://doi.org/10.1021/jp903599f
  7. Synthesis and E-Beam-Mediated Gas Phase Fragmentation of Thiol-Containing Furoxans for Nanopatterned Alkyne Formation on Gold Surface vol.31, pp.12, 2010, https://doi.org/10.5012/bkcs.2010.31.12.3583
  8. Synthesis and Characterization of Bisnitrofurazanofuroxan vol.31, pp.5, 2009, https://doi.org/10.5012/bkcs.2010.31.5.1400
  9. E-beam Mediated Ligand Dissociation of Alkyne-Dicobaltcarbonyl Complexes as Potential Photochemical Alkyne Precursor vol.34, pp.2, 2013, https://doi.org/10.5012/bkcs.2013.34.2.689
  10. New Energetic Derivatives of 1-Amino-3-Nitroguanidine vol.33, pp.3, 2015, https://doi.org/10.1080/07370652.2014.956191
  11. A Novel Parkinson’s Disease Drug Candidate with Potent Anti-neuroinflammatory Effects through the Src Signaling Pathway vol.59, pp.19, 2016, https://doi.org/10.1021/acs.jmedchem.6b00976
  12. Combining the furoxanylhydrazone framework with various energetic functionalities to prepare new insensitive energetic materials with 3D-cube layer stacking vol.44, pp.15, 2009, https://doi.org/10.1039/d0nj00541j