DOI QR코드

DOI QR Code

Direct Determination of Uric Acid in Human Serum Samples Using Polypyrrole Nanoelectrode Ensembles

  • Yang, Guangming (College of Chemistry and Chemical Engineering, Yunnan Normal University) ;
  • Tan, Lin (College of Chemistry and Chemical Engineering, Yunnan Normal University) ;
  • Shi, Ya (College of Chemistry and Chemical Engineering, Yunnan Normal University) ;
  • Wang, Suiping (State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University) ;
  • Lu, Xuxiao (College of Chemistry and Chemical Engineering, Yunnan Normal University) ;
  • Bai, Huiping (College of Chemistry and Chemical Engineering, Yunnan Normal University) ;
  • Yang, Yunhui (College of Chemistry and Chemical Engineering, Yunnan Normal University)
  • Published : 2009.02.20

Abstract

Polypyrrole (PPy) nanotubes have been synthesized by chemical oxidative polymerization of pyrrole within the pores of polycarbonate membrane using the technology of diffusion of solutes. The nanotubes array prepared by the proposed method can be considered as nanoelectrode ensembles (NEEs). An amperometric uric acid sensor based on PPy NEEs has been developed and used for determination of uric acid in human serum samples. The electrode can direct response to uric acid at potential of 0.60V vs. SCE with wide linear range of $1.52{\times}10^{-6}\;to\;1.54{\times}10^{-3}\;M.\;The\;detection\;limit\;is \;3.02{\times}10^{-7}$ M. This sensor has been used to determine uric acid in real serum samples. PPy NEEs is thought of as a good application in the foreground.

Keywords

References

  1. Wang, X. Y.; Kim, Y. G.; Ku, B.-C.; Drew, C.; Kumar, J.;Samuelson, L. A. Nano. Lett. 2004, 4, 331.31
  2. Moretto, L. M.; Ugo, P.; Martin, C. R. Anal. Chem. 1998, 70, 2163. https://doi.org/10.1021/ac970798d
  3. Smela, E. Adv. Mater. 2003, 15, 481. https://doi.org/10.1002/adma.200390113
  4. Berdichevsky, Y.; Lo, Y. H. Adv. Mater. 2006, 18, 122. https://doi.org/10.1002/adma.200501621
  5. Yuan, Y.; Kim, S. Bull. Korean Chem. Soc. 2008, 29, 1134.
  6. Yuan, Y.; Kim, S. Bull. Korean Chem. Soc. 2008, 29, 168. https://doi.org/10.5012/bkcs.2008.29.1.168
  7. Koopal, C. G. J.; Feiters, M. C.; Nolte, R. J. M. Biosens. Bioelectron. 1992, 7, 461. https://doi.org/10.1016/0956-5663(92)80003-T
  8. Parthasarathy, R. V.; Martin, C. R. Nature 1994, 369, 298. https://doi.org/10.1038/369298a0
  9. Mala Ekanayake, E. M. I.; Preethichandra, D. M. G.; Kaneto, K. Biosens. Bioelectron. 2007, 23, 107. https://doi.org/10.1016/j.bios.2007.03.022
  10. Ramanaviˇcius, A.; Ramanaviˇcien˙e, A.; Malinauskas, A. Electrochim. Acta 2006, 51, 6025. https://doi.org/10.1016/j.electacta.2005.11.052
  11. Jiang, X. H.; Lin, X. Q. Anal. Chim. Acta 2005, 537, 145. https://doi.org/10.1016/j.aca.2005.01.049
  12. Martin, C. R.; Van Dyke, L. S.; Cai, Z. H.; Liang, W. B. J. Am. Chem. Soc. 1990, 112, 8976. https://doi.org/10.1021/ja00180a050
  13. Martin, C. R. Science 1994, 266, 1961. https://doi.org/10.1126/science.266.5193.1961
  14. Hernández, R.; Richter, L.; Semancik, S.; Stranick, S.; Mallouk, T. E. Chem. Mater. 2004, 16, 3431. https://doi.org/10.1021/cm0496265
  15. Chen, J. H.; Huang, Z. P.; Wang, D. Z.; Yang, S. Y.; Li, W. Z.;Wen, J. G.; Ren, Z. P. Synth. Met. 2002, 125, 289. https://doi.org/10.1016/S0379-6779(01)00404-0
  16. Zhong, W. B.; Liu, S. M.; Chen, X. H.; Wang, Y. X.; Yang, W. T. Macromol. 2006, 39, 3224. https://doi.org/10.1021/ma0525076
  17. Carswell, A. D. W.; O'Rear, E. A.; Grady, B. P. J. Am. Chem. Soc. 2003, 125, 14793. https://doi.org/10.1021/ja0365983
  18. Jiang, Y.; Wang, A. Y.; Kan, J. Q. Sens. Actuators B, Chem. 2007, 124, 529. https://doi.org/10.1016/j.snb.2007.01.016
  19. Cooper, N.; Khosravan, R.; Erdmann, C.; Fiene, J.; Lee, J. W. J. Chromatogr. B 2006, 837, 1. https://doi.org/10.1016/j.jchromb.2006.02.060
  20. Caussé, E.; Pradelles, A.; Dirat, B.; Negre-Salvayre, A.;Salvayre, R.; Couderc, F. Electrophoresis 2007, 28, 381. https://doi.org/10.1002/elps.200600205
  21. Wang, C. Q.; Xu, H. H.; Han, X. G.; Wu, S. G. Chin. J. Ana. Lab. 2007, 26, 27.
  22. Qiao, J. X.; Luo, H. Q.; Li, N. B. Colloids Surf., B: Biointerfaces 2008, 62, 31. https://doi.org/10.1016/j.colsurfb.2007.09.012
  23. Lin, Y. H.; Lu, F.; Tu, Y.; Ren, Z. F. Nano. Lett. 2004, 4, 191. https://doi.org/10.1021/nl0347233
  24. Xian, Y. Z.; Liu, F.; Feng, L. N.; Wu, F. H.; Wang, L.; Jin L. T. Electrochem. Comm. 2007, 9, 773. https://doi.org/10.1016/j.elecom.2006.11.017
  25. Erdogdu, G.; Mark, H. B.; Karagozler, A. E. Anal. Lett. 1996, 29, 221. https://doi.org/10.1080/00032719608001001
  26. Malinauskas, A. Syn. Met. 1999, 107, 75. https://doi.org/10.1016/S0379-6779(99)00170-8
  27. Raoof, J. B.; Ojani, R.; Rashid-Nadimi, S. Electrochim. Acta 2004, 49, 271. https://doi.org/10.1016/j.electacta.2003.08.009
  28. John, S. A. Electroanal. Chem. 2005, 579, 249. https://doi.org/10.1016/j.jelechem.2005.02.012
  29. Zhang, F. F.; Wang, X. L.; Ai, S. Y.; Sun, Z. D.; Wan, Q.; Zhu, Z. Q.; Xian, Y. Z.; Jin, L. T.; Yamamoto, K. Anal. Chim. Acta 2004, 519, 155. https://doi.org/10.1016/j.aca.2004.05.070
  30. Yuan, Y.; Saleh Ahammad, A. J.; Xu, G. R.; Kim, S.; Lee, J. J. Bull. Korean Chem. Soc. 2008, 29, 1883. https://doi.org/10.5012/bkcs.2008.29.10.1883
  31. Liu, M.; He, Y. H.; Lü, J. R. Chin. J. Anal. Chem. 2005, 4, 535.

Cited by

  1. Fabrication of iron oxide nanoparticles: magnetic and electrochemical sensing property vol.24, pp.4, 2013, https://doi.org/10.1007/s10854-012-0916-1
  2. α-Fe2O3 nanoflowers: synthesis, characterization, electrochemical sensing and photocatalytic property vol.11, pp.3, 2014, https://doi.org/10.1007/s13738-013-0335-0
  3. Copper vanadate nanoparticles: synthesis, characterization and its electrochemical sensing property vol.25, pp.3, 2014, https://doi.org/10.1007/s10854-014-1757-x
  4. Isolation of a novel uric-acid-degrading microbe Comamonas sp. BT UA and rapid biosensing of uric acid from extracted uricase enzyme vol.39, pp.5, 2014, https://doi.org/10.1007/s12038-014-9476-2
  5. Fe2O3 and V2O5 Nanoparticles: A New Voltammetric Sensor vol.678, pp.1662-8985, 2013, https://doi.org/10.4028/www.scientific.net/AMR.678.331
  6. Amperometric Morphine Detection Using Pt-Co Alloy Nanowire Array-modified Electrode vol.31, pp.7, 2009, https://doi.org/10.5012/bkcs.2010.31.7.1968
  7. Direct electrochemical determination of morphine on a novel gold nanotube arrays electrode vol.412, pp.17, 2009, https://doi.org/10.1016/j.cca.2011.04.037
  8. Fabrication of α-Fe2O3 Nanoparticles for the Electrochemical Detection of Uric Acid vol.42, pp.3, 2009, https://doi.org/10.1080/15533174.2011.610022
  9. Poly(anthranilic acid) Microspheres: Synthesis, Characterization and their Electrocatalytic Properties vol.33, pp.6, 2009, https://doi.org/10.5012/bkcs.2012.33.6.1919