DOI QR코드

DOI QR Code

Synthesis and Single-crystal Structure of Fully Dehydrated Fully Ca2+exchanged Zeolite Y (FAU), |Ca35.5|[Si121Al71O384]-FAU

  • Seo, Sung-Man (Department of Applied Chemistry, Andong National University) ;
  • Choi, Sik-Young (Department of Applied Chemistry, Andong National University) ;
  • Suh, Jeong-Min (Department of Regional Environmental System Engineering, Pusan National University) ;
  • Jung, Ki-Jin (Department of Applied Chemistry, Kyungpook National University) ;
  • Heo, Nam-Ho (Department of Applied Chemistry, Kyungpook National University) ;
  • Lim, Woo-Taik (Department of Applied Chemistry, Andong National University)
  • Published : 2009.08.20

Abstract

The single-crystal structure of |$Ca_{35.5}$|[$Si_{121}Al_{71}O_{384}$]-FAU, $Ca_{35.5}Si_{121}Al_{71}O_{384}$ per unit cell, a = 24.9020(10) $\AA$, dehydrated at 673 K and 2 ${\times}\;10^{-6}$Torr, has been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd$\overline{3}$m at 294 K. The large single crystals of zeolite Y (Si/Al = 1.70) were synthesized up to diameters of ${\mu}m\;and\;Ca^{2+}$-exchanged zeolite Y were prepared by ion exchange in a batch method of 0.05 M aqueous Ca($NO_3)_2$ for 4 hrs at 294 K. The structure was refined using all intensities to the final error indices (using only the 971 reflections for which $F_o\;>\;4{\sigma}(F_o))\;R_1$ = 0.038 (based on F) and $R_2$ = 0.172 (based on $F^2$). About 35.5 $Ca^{2+}$ ions per unit cell are found at an unusually large number of crystallographically distinct positions, four. Nearly filling site I (at the centers of the double 6-rings), 14.5 octahedrally coordinated $Ca^{2+}$ ions (Ca-O = 2.4194(24) $\AA$ and O-Ca-O = 87.00(8) and 93.00($8^o$) are found per unit cell. One $Ca^{2+}$ ion per unit cell is located at site II’ in the sodalite cavity and extends 0.50 $\AA$ into the sodalite cavity from its 3-oxygen plane (Ca-O = 2.324(13) $\AA$ and O-Ca-O = 115.5(10)o). The remaining twenty $Ca^{2+}$ ions are found at two nonequivalent sites II (in the supercages) with occupancies of 10 and 10 ions, respectively. Each of these $Ca^{2+}$ ions coordinates to three framework oxygens, either at 2.283(3) or 2.333(5) $\AA$, respectively, and extends either 0.24 or 0.54 $\AA$, respectively, into the supercage from the three oxygens to which it is bound. In this crystal, site I is the most populated; sites II’ and II are only sparsely occupied.$Ca^{2+}$+ appears to fit the octahedral site I best. No cations are found at sites III or III’, which are clearly less favorable for $Ca^{2+}$ ions in dehydrated zeolite Y.

Keywords

References

  1. Breck, D. W. Zeolite Molecular Sieves; John Wiley & Son: New York, 1973; pp 92-107
  2. Smolin, Yu.; Shepelev, Yu. F.; Anderson, A. A. Acta Crystallogr., Sect. B 1989, 45, 124 https://doi.org/10.1107/S010876818801376X
  3. Jang, S. B.; Song, S. H.; Kim, Y. J. Korean Chem. Soc. 1995, 39, 7
  4. Yeom, Y. H.; Jang, S. B.; Kim, Y.; Song, S. H.; Seff, K. J. Phys. Chem. B 1997, 101, 6914 https://doi.org/10.1021/jp970907s
  5. Jang, S. B.; Jeong, M. S.; Kim, Y.; Seff, K. J. Phys. Chem. B 1997, 101, 3091 https://doi.org/10.1021/jp9639612
  6. Jang, S. B.; Jeong, M. S.; Kim, Y.; Han, Y. W.; Seff, K. Microporous Mesoporous Mater. 1998, 23, 33 https://doi.org/10.1016/S1387-1811(98)00043-2
  7. Yeom, Y. H.; Kim, A. N.; Kim, Y.; Song, S. H.; Seff, K. J. Phys. Chem. B 1998, 102, 6071 https://doi.org/10.1021/jp981437k
  8. Jang, S. B.; Jeong, M. S.; Kim, Y.; Song, S. H.; Seff, K. Microporous Mesoporous Mater. 1999, 28, 173 https://doi.org/10.1016/S1387-1811(98)00299-6
  9. Choi, E. Y.; Kim, Y.; Song, S. H. Bull. Korean Chem. Soc. 1999, 20, 791 https://doi.org/10.1007/BF02697278
  10. Choi, E. Y.; Kim, Y.; Seff, K. J. Phys. Chem. B 2002, 106, 5827
  11. Jeong, G. H.; Kim, Y.; Seff, K. Langmuir 2004, 20, 9354 https://doi.org/10.1021/la040073m
  12. Sun, H.; Blatter, F.; Frei, H. J. Am. Chem. Soc. 1994, 116, 7951 https://doi.org/10.1021/ja00096a084
  13. Cherif, L.; El-Berrichi, F.-Z.; Bengueddach, A.; Tougne, P.; Fraissard, J. Colloids and Surfaces A: Physicochem. Eng. Aspects 2003, 220, 83 https://doi.org/10.1016/S0927-7757(03)00066-9
  14. Lee, Y. M.; Jeong, G. H.; Kim, Y.; Seff, K. Microporous Mesoporous Mater. 2006, 88, 105 https://doi.org/10.1016/j.micromeso.2005.08.034
  15. Lim, W. T.; Choi, S. Y.; Choi, J. H.; Kim, Y. H.; Heo, N. H.; Seff, K. Microporous Mesoporous Mater. 2006, 92, 234 https://doi.org/10.1016/j.micromeso.2005.11.052
  16. Zhu, L.; Seff, K. J. Phys. Chem. B 2000, 104, 8946 and its erratum J. Phys. Chem. B 2001, 105, 12221 https://doi.org/10.1021/jp0133844
  17. Paillaud, J.-L.; Caullet, P.; Delmotte, L.; Mougenel, J.-C.; Kayiran, S.; Lledos, B. Studies in Surface Science and Catalysis 135; Proceedings of the 13th Zeolite Conference, Montpellier, France, 2001; 1406-1413 and CD
  18. Seo, S. M.; Kim, G. H.; Lee, H. S.; Ko, S. O.; Lee, O. S.; Kim, Y. H.; Kim, S. H.; Heo, N. H.; Lim, W. T. Anal. Sci. 2006, 22, x209 https://doi.org/10.2116/analscix.22.x209
  19. Otwinowski, Z.; Minor, W. Methods Enzymol. 1997, 276, 307 https://doi.org/10.1016/S0076-6879(97)76066-X
  20. Bruker-AXS (ver. 6.12); XPREP, Program for the Automatic Space Group Determination, Bruker AXS Inc.: Madison, Wisconsin, USA, 2001
  21. Sheldrick, G. M. SHELXL97; Program for the Refinement of Crystal Structures: University of Gottingen, Germany, 1997
  22. Lim, W. T.; Seo, S. M.; Kim, G. H.; Lee, H. S.; Seff, K. J. Phys. Chem. C 2007, 111, 18294 https://doi.org/10.1021/jp0742721
  23. Doyle, P. A.; Turner, P. S. Acta Crystallogr., Sect. A 1968, 24, 390 https://doi.org/10.1107/S0567739468000756
  24. International Tables for X-ray Crystallography; Ibers, J. A.; Hamilton, W. C., Eds.; Kynoch Press: Birmingham, England, 1974; Vol. IV, p 71-98
  25. Cromer, D. T. Acta Crystallogr. 1965, 18, 17 https://doi.org/10.1107/S0365110X6500004X
  26. International Tables for X-ray Crystallography; Kynoch Press: Birmingham: England, 1974; Vol. IV, pp 148-150
  27. Loewenstein, W. Am. Mineral. 1954, 39, 92
  28. Smith, J. V. Molecular Sieve Zeolites-I; Flanigen, E. M.; Sand, L. B, Eds.; Advances in Chemistry Series: American Chemical Society, Washington, D. C., 1971; vol. 101, pp 171-200
  29. Yeom, Y. H.; Kim, Y.; Seff, K. J. Phys. Chem. B 1997, 101, 5314 https://doi.org/10.1021/jp970727i
  30. Song, M. K.; Kim. Y.; Seff, K. J. Phys. Chem. B 2003, 107, 3117 https://doi.org/10.1021/jp0215623
  31. Handbook of Chemistry and Physics, 70th ed.; The Chemical Rubber Co.: Cleveland, OH, 1989/1990; p F-187

Cited by

  1. Synthesis and single-crystal structures of fully dehydrated fully Sr2+-exchanged zeolite Y (FAU) and its benzene sorption complex, |Sr37.5|[Si117Al75O384]-FAU and |Sr37.5(C6H6)33(H2O)15|[Si117Al75O384]-FAU vol.18, pp.5, 2011, https://doi.org/10.1007/s10934-010-9415-z
  2. Synthesis and structural refinement of fully dehydrated fully Zn2+-exchanged zeolite Y (FAU), |Zn35.5|[Si121Al71O384]-FAU vol.18, pp.1, 2011, https://doi.org/10.1007/s10934-010-9355-7