DOI QR코드

DOI QR Code

An Efficient Synthesis of 2,4,5-Triaryl-1H-Imidazole Derivatives Catalyzed by Boric Acid in Aqueous Media Under Ultrasound-Irradiation

  • Shelke, Kiran F. (Organic Research Laboratory, Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Sapkal, Suryakant (Organic Research Laboratory, Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Sonal, Swapnil (Organic Research Laboratory, Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Madje, Balaji R. (Organic Research Laboratory, Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Shingate, Bapurao B. (Organic Research Laboratory, Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Shingare, Murlidhar S. (Organic Research Laboratory, Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University)
  • Published : 2009.05.20

Abstract

Boric acid ($BO_3H_3$) is an inexpensive, efficient and mild catalyst for the synthesis of 2,4,5-triaryl-1H-imidazoles in excellent yields from the one-pot three-component condensation of benzil/benzoin, an aldehydes and ammonium acetate in aqueous media under ultrasound at room temperature. The remarkable advantages offered by this method are green catalyst, mild reaction conditions, simple procedures, much faster reactions and excellent yield of products.

Keywords

References

  1. Brimblecombe, R. W.; Duncan, W. A. M.; Durant, G. J.; Emmett, J. C.; Ganellin, C. R.; Parons, M. E. J. Int. Med. Res. 1975, 3, 86
  2. Tanigawara, Y.; Aoyama, N.; Kita, T.; Shirakawa, K.; Komada, F.; Kasuga, M. K. Clin. Pharmacol. Ther. 1999, 66, 528 https://doi.org/10.1016/S0009-9236(99)70017-2
  3. Hunkeler, W.; Mohler, H.; Pieri, L.; Polc, P.; Bonetti, E. P.; Cumin, R.; Schaffner, R. W. Nature 1981, 290, 514 https://doi.org/10.1038/290514a0
  4. Abrahams, S. L.; Hazen, R. J.; Batson, A. G.; Phillips, A. P. J. Pharmacol Exp. Ther. 1989, 249, 359
  5. Radziszewski, B. Chem. Ber. 1882, 15, 1493 https://doi.org/10.1002/cber.18820150207
  6. Japp, F. R.; Robinson, H. H. Chem. Ber. 1882, 15, 1268 https://doi.org/10.1002/cber.188201501272
  7. Grimmett, M. R. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V., Eds.; Pergamon: NewYork, 1996; Vol. 3, p 77
  8. Balalaie, S.; Arabanian, A.; Hashtroudi, M. S. Mont. Fur. Chem. 2000, 131, 945 https://doi.org/10.1007/s007060070049
  9. Sharma, G. V. M.; Jyothi, Y.; Lakshmi, P. S. Syn. Commun. 2006, 36, 2991 https://doi.org/10.1080/00397910600773825
  10. Heravi, M. M.; Bakhtiari, K.; Oskooie, H. A.; Taheri, S. J. Mol. Cata. A: Chem. 2007, 263, 279 https://doi.org/10.1016/j.molcata.2006.08.070
  11. Siddiqui, S. A.; Narkhede, U. C.; Palimkar, S. S.; Daniel, T.; Lahoti, R. J.; Srinivasan, K. V. Tetrahedron 2005, 61, 3539 https://doi.org/10.1016/j.tet.2005.01.116
  12. Shaabani, A.; Rahmati, B.; Aghaaliakbari, J.; SafaeiGhomi, Synth. Commun. 2006, 36, 65 https://doi.org/10.1080/00397910500328969
  13. Kidwai, M.; Mothsra, P.; Bansal, V.; Goyal, R. Mont. Fur. Chem. 2006, 137, 1189 https://doi.org/10.1007/s00706-006-0518-9
  14. Sangshetti, J. N.; Kokare, N. D.; Kothakar, S. A.; Shinde, D. B. Mont. Fur. Chem. 2008, 139, 125 https://doi.org/10.1007/s00706-007-0766-3
  15. Usyatinsky, A. Y.; Khmelnitsky, Y. L. Tetrahedron Lett. 2000, 41, 5031 https://doi.org/10.1016/S0040-4039(00)00771-1
  16. Wolkenberg, S. E.; Winoski, D. D.; Leister, W. H.; Wang, Y.; Zhao, Z.; Lindsley, C. W. Org. Lett. 2004, 6, 1453 https://doi.org/10.1021/ol049682b
  17. (Wang, L.-M. et al., 1573) Wang, L. M.; Wang, Y. H.; Tian, H.; Yao, Y. F.; Shao, J. H.; Liu, B. J. Fluorine Chem. 2006, 127, 1570 https://doi.org/10.1016/j.jfluchem.2006.08.005
  18. Rideout, D. C.; Breslow, R. J. Am. Chem. Soc. 1980, 102, 7817 https://doi.org/10.1021/ja00546a049
  19. Pawar, S. S.; Dekhane, D. V.; Shingare, M. S.; Thore, S. N. Chin. Chem. Lett. 2008, 19, 1055 https://doi.org/10.1016/j.cclet.2008.06.028
  20. Hangarge, R. V.; Karale, B. K.; Mane, A. S.; Chavan, V. P.; Jarikote, D. V.; Shingare, M. S. Green Chem. 2001, 3, 310 https://doi.org/10.1039/b106871g
  21. Shindalkar, S. S.; Madje, B. R.; Shingare, M. S. J. Korean Chem. Soc. 2005, 49, 377 https://doi.org/10.5012/jkcs.2005.49.4.377
  22. Tu, S. J.; Zhu, X. T.; Fang, F.; Zhang, X. J.; Zhu, S. L.; Li, T. J.; Shi, D. Q.; Wang, X. S.; Ji, S. J. Tetrahedron Lett. 2003, 44, 6153 https://doi.org/10.1016/S0040-4039(03)01466-7
  23. Pingwah, T. Org. Synt. 2005, 81, 262 https://doi.org/10.15227/orgsyn.081.0262
  24. Chaudhuri, M. K.; Hussain, S.; Lakshmi Kantam, M.; Neelima, B. Tetrahedron Lett. 2005, 46, 8329 https://doi.org/10.1016/j.tetlet.2005.09.167
  25. Tu, S. J.; Zhu, X. T.; Fang, Zhang, X. J.; Zhu, S. L.; Li, T. J.; Shi, D. Q.; Wang, X. S.; Ji, S. J. Chine. J. Chem. 2005, 23, 596 https://doi.org/10.1002/cjoc.200590596
  26. Chaudhuri, M. K.; Hussain, S. J. Mol. Cat. A 2007, 269, 214 https://doi.org/10.1016/j.molcata.2007.01.014
  27. Kondaiah, G. C. M.; Amarnath Reddy, L.; Srihari Babu, K.; Gurav, V. M.; Huge, K. G.; Bandichhor, R.; Pratap Reddy, P.; Bhattacharya, A.; Vijaya Ananda, R. Tetrahedron Lett. 2008, 49, 106 https://doi.org/10.1016/j.tetlet.2007.11.008
  28. Kumar, A.; Maurya, R. A. Tetrahedron Lett. 2008, 49, 5471 https://doi.org/10.1016/j.tetlet.2008.07.019
  29. Gaplovsky, A.; Gaplovsky, M.; Toma, S.; Luche, J. L. J. Org. Chem. 2000, 65, 8444 https://doi.org/10.1021/jo000611+
  30. Rajagopal, R.; Jarikote, D. V.; Srinivasan, K. V. Chem. Commun. 2002, 616
  31. Song, B. A.; Zhang, G. P.; Yang, S.; Hu, D. Y.; Jin, L. H. Ultra. Chem. 2001, 13, 1544
  32. Shindalkar, S. S.; Madje, B. R.; Shingare, M. S. Ind. J. Hetero. Chem. 2005, 15, 81
  33. Shelke, K. F.; Madje, B. R.; Sadaphal, S. A.; Shitole, N. V.; Shingare, M. S. Org. Chem.: Ind. J. 2008, 4, 277
  34. Hangarge, R. V.; Jarikote, D. V.; Shingare, M. S. Green Chem. 2002, 4, 266 https://doi.org/10.1039/b111634g
  35. Madje, B. R.; Shindalkar, S. S.; Ware, M. N.; Shingare, M. S. Arkivoc 2005, 14, 82
  36. Shindarlkar, S. S.; Madje, B. R.; Shingare, M. S. Mendeleev Commun. 2007, 17, 43 https://doi.org/10.1016/j.mencom.2007.01.017
  37. Sadaphal, S. A.; Shelke, K. F.; Sonar, S. S.; Shingare, M. S. Central. Euro. J. Chem. 2008, 6, 622 https://doi.org/10.2478/s11532-008-0069-5
  38. Diwakar, S. D.; Bhagwat, S. S.; Shingare, M. S.; Gill, C. H. Bioorg. Med. Chem. Lett. 2008, 18, 4678 https://doi.org/10.1016/j.bmcl.2008.07.007
  39. Sapkal, S. B.; Shelke, K. F.; Shingare, M. S. Tetrahedron Lett. 2009, 50, 1754 https://doi.org/10.1016/j.tetlet.2009.01.140
  40. Shelke, K. F.; Madje, B. R.; Sapkal, S. B.; Shingate, B. B.; Shingare M. S. Green Chem. Lett. Rev. 2009 (In press)

Cited by

  1. Alum catalyzed simple and efficient synthesis of 5-arylidene-2,4-thiazolidinedione in aqueous media vol.3, pp.1, 2010, https://doi.org/10.1080/17518250903478345
  2. Under Conventional Heating Conditions or Microwave Irradiation vol.41, pp.16, 2011, https://doi.org/10.1080/00397911.2010.502994
  3. Ammonium metavanadate as an efficient catalyst for the synthesis of 2,4,5-triaryl-1H-imidazoles vol.48, pp.3, 2011, https://doi.org/10.1002/jhet.548
  4. Zinc (II) [tetra(4-methylphenyl)] Porphyrin: a Novel and Reusable Catalyst for Efficient Synthesis of 2,4,5-trisubstituted Imidazoles Under Ultrasound Irradiation vol.55, pp.5, 2011, https://doi.org/10.5012/jkcs.2011.55.5.787
  5. Multicomponent reactions in unconventional solvents: state of the art vol.14, pp.8, 2012, https://doi.org/10.1039/c2gc35635j
  6. Magnetic nanoparticle supported ionic liquid as novel and effective heterogeneous catalyst for synthesis of substituted imidazoles under ultrasonic irradiation vol.144, pp.9, 2013, https://doi.org/10.1007/s00706-013-1015-6
  7. An Efficient and Green Method for Synthesis of 2,4,5-Triarylimidazoles without Use of Any Solvent, Catalyst, or Solid Surface vol.2013, pp.2090-2018, 2013, https://doi.org/10.1155/2013/512074
  8. Brønsted acid ionic liquid [Et3NH][HSO4] as an efficient and reusable catalyst for the synthesis of 2,4,5-triaryl-1H-imidazoles vol.39, pp.3, 2013, https://doi.org/10.1007/s11164-012-0669-8
  9. , AN EFFICIENT AND RECYCLABLE CATALYST vol.43, pp.2, 2013, https://doi.org/10.1080/10826068.2012.719845
  10. Sonochemistry: Synthesis of Bioactive Heterocycles vol.44, pp.15, 2014, https://doi.org/10.1080/00397911.2014.893360
  11. ChemInform Abstract: An Efficient Synthesis of 2,4,5-Triaryl-1H-imidazole Derivatives Catalyzed by Boric Acid in Aqueous Media under Ultrasound-Irradiation. vol.40, pp.39, 2009, https://doi.org/10.1002/chin.200939117
  12. Microwave-Assisted Synthesis of 3-Styrylchromones in Alkaline Ionic Liquid vol.30, pp.12, 2009, https://doi.org/10.5012/bkcs.2009.30.12.2883
  13. Nickel Nanoparticles: An Ecofriendly and Reusable Catalyst for the Synthesis of 3,4-Dihydropyrimidine-2(1H)-ones via Biginelli Reaction vol.31, pp.2, 2009, https://doi.org/10.5012/bkcs.2010.31.02.351
  14. An Efficient One-Pot Strategies for the Synthesis of [1,3] Oxazine Derivatives vol.54, pp.4, 2009, https://doi.org/10.5012/jkcs.2010.54.4.437
  15. Sulfated Tin Oxide: A Reusable and Highly Efficient Heterogeneous Catalyst for the Synthesis of 2,4,5-Triaryl-1H-imidazole Derivatives vol.42, pp.10, 2009, https://doi.org/10.1080/00397911.2010.541744
  16. Sulphamic acid-functionalized magnetic Fe3O4 nanoparticles as recyclable catalyst for synthesis of imidazoles under microwave irradiation vol.125, pp.4, 2009, https://doi.org/10.1007/s12039-013-0462-2
  17. Fe3O4@chitosan nanoparticles: a valuable heterogeneous nanocatalyst for the synthesis of 2,4,5-trisubstituted imidazoles vol.4, pp.40, 2009, https://doi.org/10.1039/c4ra03176h
  18. One-pot synthesis of multisubstituted imidazoles under solvent-free conditions and microwave irradiation using Fe3O4@SiO2–imid–PMAn magnetic por vol.39, pp.5, 2015, https://doi.org/10.1039/c5nj00050e
  19. Synthesis of imidazole derivatives: Ester and hydrazide compounds with antioxidant activity using ionic liquid as an efficient catalyst vol.57, pp.2, 2009, https://doi.org/10.1002/jhet.3808
  20. Organocatalyzed Solvent Free and Efficient Synthesis of 2,4,5‐Trisubstituted Imidazoles as Potential Acetylcholinesterase Inhibitors for Alzheimer's Disease vol.17, pp.3, 2009, https://doi.org/10.1002/cbdv.201900493
  21. Sugar-Catalyzed Synthesis of Triarylimidazoles-An Exemplary Model of Sweet Chemistry vol.56, pp.3, 2009, https://doi.org/10.1134/s1070428020030227
  22. Green approaches for the synthesis of poly-functionalized imidazole derivatives: A comprehensive review vol.4, pp.None, 2009, https://doi.org/10.1016/j.crgsc.2021.100175
  23. Fe3O4@SiO2/Bipyridinium Nanocomposite as a Magnetic and Recyclable Heterogeneous Catalyst for the Synthesis of Highly Substituted Imidazoles Via Multi-Component Conden vol.41, pp.4, 2009, https://doi.org/10.1080/10406638.2019.1616306