DOI QR코드

DOI QR Code

Thermosensitive Block Copolymers Consisting of Poly(N-isopropylacrylamide) and Star Shape Oligo(ethylene oxide)

  • Lee, Seung-Cheol (Department of Materials Science and Engineering, Seoul National University) ;
  • Chang, Ji-Young (Department of Materials Science and Engineering, Seoul National University)
  • Published : 2009.07.20

Abstract

Thermosensitive block copolymers of ethylene oxide and N-isopropylacrylamide (NIPAM) were synthesized. A five armed star shape oligo(ethylene oxide) initiator with a cyclotriphosphazene core was prepared and used for the atom transfer radical polymerization (ATRP) of NIPAM. The lower critical solution temperatures (LCSTs) of the copolymers were 36 to 46 ${^{\circ}C}$, higher than that of PNIPAM (32 ${^{\circ}C}$), depending on their molecular weights. The copolymers were soluble in water below the LCSTs but formed micelles above the LCSTs. The thermosensitive micellization behaviors of the polymers were investigated by fluorescence spectroscopy. With increasing the temperature of an aqueous solution of P2 and pyrene above the LCST, the peak of 333 nm red-shifted to appear around 339 nm and its intensity increased significantly, indicating the micelle formation. The transfer of pyrene into the micelles was also confirmed by a confocal laser scanning microscope. The fluorescence image obtained from P2 in an aqueous pyrene solution exhibited a green emission resulting from the pyrene transferred into the micelles. Salt effects on the solubility of the copolymers in an aqueous solution were investigated. The LCST of P2 decreased sharply as the concentration of sodium chloride increased, while decreased slowly with potassium chloride.

Keywords

References

  1. Qui, Y.; Park, K. Adv. Drug Delivery Rev. 2001, 53, 312
  2. Chytry, V.; Ulbrich, K. J. Bioact. Compat. Polym. 2001, 16, 427 https://doi.org/10.1106/FDUM-1LXE-WGJ9-BYVW
  3. Jydegaard-Axelsen, A. M.; Hoiby, P. E.; Holmstrom, K.; Russell, N.; Knochel, S. Appl. Environ. Microb. 2004, 70, 4111 https://doi.org/10.1128/AEM.70.7.4111-4117.2004
  4. Zintchenco, A.; Ogris, M.; Wagner, E. Bioconjugate Chem. 2006, 17, 766 https://doi.org/10.1021/bc050292z
  5. Bergbreiter, D. E.; Case, B. L.; Liu. Y. S.; Caraway, J. W. Macromolecules 1998, 31, 6053 https://doi.org/10.1021/ma980836a
  6. Yoshida, R.; Uchida, K.; Kaneko, Y.; Sakai, K.; Kikuchi, A.; Sakurai, Y.; Okano, T. Nature 1995, 374, 240 https://doi.org/10.1038/374240a0
  7. Liang, D.; Zhou, S.; Song, L.; Zaitsev, V. S.; Chu, B. Macromolecules 1999, 32, 6326 https://doi.org/10.1021/ma9901792
  8. Virtanen, J.; Tenhu, H. Macromolecules 2000, 33, 5970 https://doi.org/10.1021/ma9918093
  9. Zhu, P. W.; Napper, D. H. Langmuir 2000, 16, 8543 https://doi.org/10.1021/la000489+
  10. Virtanen, J.; Holappa, S.; Lemmetyinen, H.; Thenhu, H. Macromolecules 2002, 35, 4763 https://doi.org/10.1021/ma012239l
  11. Neradovic, D.; Soga, O.; Nostrum, C. F. V.; Hennink, W. E. Biomaterials 2004, 25, 2409 https://doi.org/10.1016/j.biomaterials.2003.09.024
  12. Zhang, W.; Shi, L.; Wu, K.; An, Y. Macromolecules 2005, 38, 5743 https://doi.org/10.1021/ma0509199
  13. Kim, K. H.; Kim, J.; Jo, W. H. Polymer 2005, 46, 2836 https://doi.org/10.1016/j.polymer.2005.02.009
  14. Mitokawa, R.; Morishita, K.; Koizumi, S.; Nakahira, T.; Annaka, M. Macromolecules 2005, 38, 5748 https://doi.org/10.1021/ma047393x
  15. Choi, M. G.; Kim, H. J.; Chang, S.-K. Bull. Korean Chem. Soc. 2008, 29, 567 https://doi.org/10.5012/bkcs.2008.29.3.567
  16. Kim, H. J.; Kim, S. H.; Quang, D. T.; Kim, J. H.; Suh, I.-H.; Kim, J. S. Bull. Korean Chem. Soc. 2007, 28, 811 https://doi.org/10.5012/bkcs.2007.28.5.811
  17. Okada, T. Analyst 1993, 118, 959 https://doi.org/10.1039/an9931800959
  18. Blonsky, P. M.; Shriver, D. F.; Austin, P. E.; Allcock, H. R. J. Am. Chem. Soc. 1984, 106, 6854 https://doi.org/10.1021/ja00334a071
  19. Blonsky, P. M.; Shriver, D. F.; Austin, P. E.; Allcock, H. R. Solid State Ionics 1986, 18/19, 258 https://doi.org/10.1016/0167-2738(86)90123-2
  20. Allcock, H. R.; Olmeijer, D. L.; O'Connor, S. J. M. Macromolecules 1998, 31, 753 https://doi.org/10.1021/ma971666p
  21. Jun, Y. J.; Min, J. H.; Ji, D. E.; Yoo, J. H.; Sohn, Y. S. Bull. Korean Chem. Soc. 2008, 29, 2323 https://doi.org/10.5012/bkcs.2008.29.12.2323
  22. Shin, Y. J.; Park, C. S.; Lee, C. I.; Shin, J. S. Bull. Korean Chem. Soc. 2008, 29, 2005 https://doi.org/10.5012/bkcs.2008.29.10.2005
  23. Ciampolini, M.; Nardi, N. Inorg. Chem. 1966, 5, 41 https://doi.org/10.1021/ic50035a010
  24. Furyk, S.; Zhang, Y.; Ortiz-Acosta, D.; Cremer, P. S.; Bregbreiter, D. E. J. Polym. Sci. Polym. Chem. 2006, 44, 1492 https://doi.org/10.1002/pola.21256
  25. Inomata, H.; Goto, S.; Otake, K.; Saito, S. Langmuir 1992, 8, 687 https://doi.org/10.1021/la00038a064
  26. Suwa, K.; Yamamoto, K.; Akashi, M.; Takano, K.; Tanaka, N.; Kunugi, S. Colloid Polym. Sci. 1998, 276, 529-533 https://doi.org/10.1007/s003960050276
  27. Zhang, Y.; Furyk, S.; Bergbreiter, D. E.; Cremer, P. S. J. Am. Chem. Soc. 2005, 127, 14505 https://doi.org/10.1021/ja0546424
  28. Landini, D.; Maia, A.; Corda, L.; Maccioni, A.; Podda, G. Tetrahedron Lett. 1989, 42, 5781
  29. Gobbi, A.; Landini, D.; Maia, A.; Delogu, G.; Podda, G. J. Org. Chem. 1994, 59, 5059 https://doi.org/10.1021/jo00096a060

Cited by

  1. Dissipative particle dynamics simulation of the micellization–demicellization process and micellar shuttle of a diblock copolymer in a biphasic system (water/ionic-liquid) vol.8, pp.6, 2012, https://doi.org/10.1039/C1SM07037A
  2. Atom transfer radical polymerization of hydrophilic monomers and its applications vol.4, pp.10, 2013, https://doi.org/10.1039/c3py00122a
  3. Thermosensitive mPEG-b-PA-g-PNIPAM Comb Block Copolymer Micelles: Effect of Hydrophilic Chain Length and Camptothecin Release Behavior vol.31, pp.2, 2014, https://doi.org/10.1007/s11095-013-1160-y
  4. An application of concatenated 2D correlation spectroscopy: Exploration of the reversibility of the temperature-induced hydration variation of poly(N-isopropylmethacrylamide) in aqueous solution vol.974, pp.1, 2009, https://doi.org/10.1016/j.molstruc.2009.11.045
  5. Heteroarm Star-Shaped Poly (N-isopropylacryamide-co-itaconic acid) Copolymer Prepared by Glucose Core as ATRP Initiator vol.63, pp.5, 2009, https://doi.org/10.1080/00914037.2013.830251