DOI QR코드

DOI QR Code

Acetate-Promoted Aldol-Type Reaction: Scope and Reactivity of Acetates and Aldehydes

  • Published : 2009.04.20

Abstract

Potential of acetates and related compounds in glacial acetic acid as a catalyst for aldol-type condensation reactions was examined. Reactions of cycloalkanones or selected heteroaromatics with aldehydes in presence of 10 mol% of various acetates in acetic acid afforded ${\alpha},{\alpha}$'-bis(substituted-benzylidene)cycloalkanones and substituted-benzylidene-mackinazolinones, respectively, in good yields. Among the compounds tested, ammonium acetate is the best and effective especially towards the reactions of mackinazolinone and aliphatic aldehydes to afford 6-alkylidenemackinazolinones.

Keywords

References

  1. Nielsen, A. T.; Houlihan, W. J. Organic Reactions; Adams, R.; Blatt, A. H.; Boekelheide, V.; Cairns, T. L.; Cram, D. J.; House, H. O., Eds.; John Wiley & Sons: New York, 1968; Vol. 16, p 1.
  2. Mukaiyama, T. Organic Reactions; Dauben, W. G., Ed.; John Wiley & Sons: New York, 1982; Vol. 28, p 203.
  3. Heathcock, C. H. In cc; Trost, B. M.; Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 2, p 133.
  4. Gennari, C. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 2, p 629.
  5. Mahrwald, R. Modern Aldol Reactions; Wiley-VCH-Verlag GmbH & Co.: Germany, 2004; Vol. 1 and 2.
  6. Reeves, R. L. Chemistry of Carbonyl Group; Patai, S., Ed.; Wiley Intersciences: New York, 1966; p 580.
  7. Robinson, T. P.; Ehlers, T.; Hubbard, R. B.; Bai, X.; Arbiser, J. L.; Goldsmith, D. J.; Bowena, J. P. Bioorg. Med. Chem. Lett. 2003, 13, 115. https://doi.org/10.1016/S0960-894X(02)00832-6
  8. Robinson, T. P.; Hubbard, R. B.; Ehlers, T. J.; Arbiser, J. L.; Goldsmith, D. J.; Bowen, J. P. Bioorg. Med. Chem. 2005, 13, 4007. https://doi.org/10.1016/j.bmc.2005.03.054
  9. Dinkova-Kostova, A. T.; Abeygunawardana, C.; Talalay, P. J. Med. Chem. 1998, 41, 5287. https://doi.org/10.1021/jm980424s
  10. Dimmock, J. R.; Padmanilayam, M. P.; Zello, G. A.; Nienaber, K. H.; Allen, T. M.; Santos, C. L.; De Clercq, E.; Balzarini, J.; Manavathu, E. K.; Stables, J. P. Eur. J. Med. Chem. 2003, 38, 169. https://doi.org/10.1016/S0223-5234(02)01444-7
  11. Modzelewska, A.; Pettit, C.; Achanta, G.; Davidson, N. E.; Huang, P.; Khan, S. R. Bioorg. Med. Chem. 2006, 14, 3491. https://doi.org/10.1016/j.bmc.2006.01.003
  12. Piantadosi, C.; Hall, I. H.; Irvine, J. L.; Carlson, G. L. J. Med. Chem. 1973, 16, 770. https://doi.org/10.1021/jm00265a006
  13. Kawamata, J.; Inoue, K.; Inabe, T.; Kiguchi, M.; Kato, M.; Taniguchi, Y. Chem. Phys. Lett. 1996, 249, 29. https://doi.org/10.1016/0009-2614(95)01373-3
  14. Deli, J.; Lorand, J.; Szabo, D.; Foldesi, A. Pharmazie 1984, 39, 539.
  15. Leonard, N. J.; Miller, L. A.; Berry, J. W. J. Am. Chem. Soc. 1957, 79, 1482. https://doi.org/10.1021/ja01563a056
  16. Ciufolini, M. A.; Byrne, N. E. J. Am. Chem. Soc. 1991, 113, 8016. https://doi.org/10.1021/ja00021a031
  17. Hoeve, W. T.; Wynberg, H. J. Org. Chem. 1980, 45, 2930. https://doi.org/10.1021/jo01303a002
  18. Dixon, G. M.; Halton, B. Eur. J. Org. Chem. 2004, 3707.
  19. Jin, T.-S.; Liu, L.-B.; Zhao, Y.; Li, T.-S. Synth. Commun. 2005, 35, 1859. https://doi.org/10.1081/SCC-200064898
  20. Muthusamy, S.; Arulananda, S.; Gunanathan, C. Tetrahedron Lett. 2003, 43, 3931.
  21. Engemeie, G. H.; Ali, A. A. Synth. Commun. 2002, 32, 253. https://doi.org/10.1081/SCC-120002010
  22. Tilichenko, M. N.; Vysotskii, V. I. Zh. Obshch. Khim. 1962, 32, 84; English translation J. Gen. Chem., USSR 1962, 81.
  23. Zymalkowski, F.; Kothari, M. Arch. Pharm. (Weinheim) 1970, 303, 667. https://doi.org/10.1002/ardp.19703030809
  24. Oripov, E.; Shakhidoyatov, Kh. M.; Kadyrov, Ch. Sh.; Abdullaev, N. D. Khim. Geterosikl. Soedin. 1979, 5, 684.
  25. Dammertz, W.; Raimann, E. Arch. Pharm. (Weinheim) 1977, 310, 172. https://doi.org/10.1002/ardp.19773100216
  26. Thummel, R. P.; Lefoulon, F.; Cantu, D.; Mahadevan, M. J. Org. Chem. 1984, 49, 2208. https://doi.org/10.1021/jo00186a027
  27. Lee, S. H.; Kim, S. I.; Park, J. G.; Lee, E. S.; Jahng, Y. Heterocycles 2001, 55, 1555. https://doi.org/10.3987/COM-01-9244
  28. Thummel, R. P.; Lefoulon, F. J. Org. Chem. 1985, 50, 666. https://doi.org/10.1021/jo00205a022
  29. Thummel, R. P.; Lefoulon, F.; Mahadevan, R. J. Org. Chem. 1985, 50, 3824. https://doi.org/10.1021/jo00220a028
  30. Thummel, R. P.; Jahng, Y. J. Org. Chem. 1985, 50, 2407. https://doi.org/10.1021/jo00214a001
  31. Jain, M. P.; Gupta, V. N.; Atal, C. K.; Nath, L. G. D. Ind. J. Chem. 1985, 24B, 983.
  32. Chang, H. W.; Kim, S. I.; Jung, H.; Jahng, Y. cs 2003, 60, 1359. https://doi.org/10.3987/COM-03-9744
  33. Lee, E. S.; Park, J. G.; Kim, S. I.; Jahng, Y. Heterocycles 2006, 61, 151.
  34. Liu, J.-F.; Wilson, C. J.; Ye, P.; Sprague, K.; Sargent, K.; Beletsky, Y; Si,G.; Yohannes, D.; Ng, S.-C. Bioorg. Med. Chem. Lett. 2006, 16, 686. https://doi.org/10.1016/j.bmcl.2005.10.022
  35. Dhar, D. N.; Barton, D. The Chemistry of Chalcones and Related Compounds; John Wiley & Sons: 1981; p 8.
  36. Gall, E. L.; Texier-Boullet, F.; Hamelin, J. Synth. Commun. 1999, 29, 3651. https://doi.org/10.1080/00397919908086000
  37. Geissman, T. A.; Clinton, R. O. J. Am. Chem. Soc. 1946, 68, 697. https://doi.org/10.1021/ja01208a051
  38. Sinistierra, J. V.; Garcia-Raso, A.; Cabello, J. A.; Marinas, J. M. c1984, 6, 502.
  39. Lin, T.; Cromwell, N. H.; Kingsbury, C. A. J. Heterocycl. Chem. 1985, 22, 21. https://doi.org/10.1002/jhet.5570220106
  40. Fringuelli, F.; Pani, F. G.; Piermatti, O.; Pizz, F. Tetrahedron 1994, 50, 11499. https://doi.org/10.1016/S0040-4020(01)89287-5
  41. Gupta, R.; Gupta, A. K.; Paul, S.; Kachroo, P. L. Indian J. Chem. Sec. B 1995, 34, 61.
  42. Vatsadze, S. Z.; Manaenkova, M. A.; Sviridenkova, N. V.; Zyk, N. V.; Krutko, D. P.; Churakov, A. V.; Antipin, M. Yu.; Howard, J. A. K.; Lange, H. Russ. Chem. Bull. 2006, 55, 1184. https://doi.org/10.1007/s11172-006-0397-6
  43. Schriner, L.; Kurosawa, T. J. Am. Chem. Soc. 1930, 52, 2538. https://doi.org/10.1021/ja01369a057
  44. Dhar, D. N.; Lal, J. B. J. Org. Chem. 1958, 23, 1159. https://doi.org/10.1021/jo01102a021
  45. Hathaway, B. A. J. Chem. Edu. 1987, 64, 367. https://doi.org/10.1021/ed064p367
  46. Irie, K.; Watanabe, K. Bull. Chem. Soc. Jpn. 1980, 53, 1366. https://doi.org/10.1246/bcsj.53.1366
  47. Nakano, T.; Irifune, S. J.; Umano, S.; Inada, A.; Ishii, Y.; Ogawa, M. J. Org. Chem. 1987, 52, 2239. https://doi.org/10.1021/jo00387a025
  48. Nakano, T.; Migita, T. Chem. Lett. 1993, 12, 2157.
  49. Bao, W.; Zhang, Y.; Ying, T. Synth. Commun. 1996, 26, 503. https://doi.org/10.1080/00397919608003641
  50. Zheng, M.; Wang, L.; Shao, J.; Zhong, Q. Synth. Commun. 1997, 27, 351. https://doi.org/10.1080/00397919708005039
  51. Iranpoor, N.; Kazemi, F. Tetrahedron 1998, 54, 9475. https://doi.org/10.1016/S0040-4020(98)00575-4
  52. Iranpoor, N.; Zeynizadeh, B.; Aghapour, A. J. Chem. Res., Synop. 1999, 9, 554.
  53. Dewa, T.; Saiki, T. Y. Aoyama, J. Am. Chem. Soc. 2001, 123, 502. https://doi.org/10.1021/ja001140b
  54. Yadav, J. S.; Reddy, B. V. S.; Nagaraju, A.; Sarma, J. A. R. P. Synth. Commun. 2002, 32, 893. https://doi.org/10.1081/SCC-120002700
  55. Salehi, P.; Khodaei, M. M.; Zolfigol, M. A.; Keyvan, A. Monatsh. Chem. 2002, 133, 1291. https://doi.org/10.1007/s007060200107
  56. Zhang, X.; Fan, X.; Niu, H.; Wang, J. Green Chemistry 2003, 5, 267. https://doi.org/10.1039/b212155g
  57. Huang, D. F.; Wang, J. X.; Hu, Y. L. Chin. Chem. Lett. 2003, 14, 333.
  58. Deng, G.; Ren, T. Synth. Commun. 2003, 33, 2995. https://doi.org/10.1081/SCC-120022473
  59. Sabitha, G.; Reddy, G. S. K. K.; Reddy, K. B.; Yadav, J. S. Synthesis 2004, 263.
  60. Zhu, Y.; Pan, Y. Chem. Lett. 2004, 33, 668. https://doi.org/10.1246/cl.2004.668
  61. Hu, Z. G.; Liu, J.; Zeng, P. L.; Dong, Z. B. J. Chem. Res., Synop. 2004, 1, 55.
  62. Wang, L.; Sheng, J.; Tian, H.; Han, J.; Fan, Z.; Qian, C. Synthesis 2004, 3060.
  63. Cao, Y.-Q.; Zhi, D.; Zhang, R.; Chen, B.-H. Synth. Commun. 2005, 35, 1045. https://doi.org/10.1081/SCC-200054198
  64. Das, B.; Thirupathi, P.; Mahender, I.; Reddy, K. R. J. Mol. Cat. A: Chem. 2006, 247, 182. https://doi.org/10.1016/j.molcata.2005.11.044
  65. Arnold, A.; Markert, M.; Mahrwald, R. Synthesis 2006, 7, 1099.
  66. Babu, G.; Perumal, P. T. Synth. Commun. 1997, 27, 3677. https://doi.org/10.1080/00397919708007287
  67. Wang, J.-X.; Kang, L.; Hu, Y.; Wei, B. G. Synth. Commun. 2002, 32, 1691. https://doi.org/10.1081/SCC-120004261
  68. Mayer, R. Chem. Ber. 1955, 88, 1853. https://doi.org/10.1002/cber.19550881206
  69. Tilichenko, M. N.; Barbulescu, E.; Barbuleseu, N. Rev. Chim. (Bucharest, Romania) 1961, 12, 631 (CA 57:55844).
  70. Paterson, I. Tetrahedron 1988, 44, 4207. https://doi.org/10.1016/S0040-4020(01)86667-9
  71. Murakaiyama, T.; Banno, K.; Narasaka, K. J. Am. Chem. Soc. 1974, 96, 7503.
  72. Smith, R. A.; Spencer, T. A. J. Org. Chem. 1970, 35, 3220. https://doi.org/10.1021/jo00835a007
  73. Birkofer, L.; Kim, S. M.; Engels, H. E. Ber. 1962, 96, 1495.
  74. Wittig, G.; Hesse, A. Org. Syn. 1970, 50, 66. https://doi.org/10.15227/orgsyn.050.0066
  75. House, H. O.; Crumrine, O. S.; Teranishi, A. Y.; Olmstead, H. D. J. Am. Chem. Soc. 1973, 95, 3310. https://doi.org/10.1021/ja00791a039
  76. Rahman, M. A. F. M.; Jeong, B. S.; Kim, D. H.; Park, J. K.; Lee, E. S.; Jahng, Y. Tetrahedron 2007, 63, 2426. https://doi.org/10.1016/j.tet.2007.01.020
  77. Reeve, W.; Kiehlmann, E. J. Org. Chem. 1966, 31, 2164. https://doi.org/10.1021/jo01345a022
  78. Yan, C.-G.; Cai, X.-M.; Wang, Q.-F.; Wang, T.-Y.; Zheng, M. Org. Biomol. Chem. 2007, 5, 945. https://doi.org/10.1039/b617256c
  79. List, B.; Lerner, R. A.; Barbas III, C. F. J. Am. Chem. Soc. 2000, 122, 2395. https://doi.org/10.1021/ja994280y
  80. Northrup, A. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 6798. https://doi.org/10.1021/ja0262378
  81. Alcaide, B.; Almendros, P. Angew. Chem. Int. Ed. 2003, 42, 858. https://doi.org/10.1002/anie.200390232
  82. Buonora, P. T.; Rosauer, K. G.; Dai, L. Tetrahedron Lett. 1995, 36, 4009. https://doi.org/10.1016/0040-4039(95)00700-M
  83. Dubois, J. E.; Dubois, M. Compt. Rend. 1963, 256, 715.
  84. Watson, P. L.; Bergman, R. G. J. Am. Chem. Soc. 1979, 101, 2055. https://doi.org/10.1021/ja00502a020
  85. Edgar, O. B.; Johnson, D. H. J. Chem. Soc. 1958, 3925. https://doi.org/10.1039/jr9580003925
  86. Tubul, A.; Santelli, M. Tetrahedron 1988, 44, 3975. https://doi.org/10.1016/S0040-4020(01)86649-7
  87. Kaup, G.; Frey, H.; Behmann, G. Chem. Ber. 1988, 121, 2127. https://doi.org/10.1002/cber.19881211210
  88. English, Jr., J.; Lamberti, V. J. Am. Chem. Soc. 1952, 74, 1909. https://doi.org/10.1021/ja01128a009

Cited by

  1. Synthesis and Biological Properties of Benzo-Annulated Rutaecarpines vol.33, pp.10, 2010, https://doi.org/10.1248/bpb.33.1704
  2. A Facile Solvent Free Claisen-Schmidt Reaction: Synthesis of α,α′-bis-(Substituted-benzylidene)cycloalkanones and α,α′-bis-(Substituted-alkylidene)cycloalkanones vol.17, pp.1, 2012, https://doi.org/10.3390/molecules17010571
  3. ChemInform Abstract: Acetate-Promoted Aldol-Type Reaction: Scope and Reactivity of Acetates and Aldehydes. vol.40, pp.36, 2009, https://doi.org/10.1002/chin.200936039
  4. Cinnamil- and Quinoxaline-Derivative Indicator Dyes for Detecting Volatile Amines in Fish Spoilage vol.24, pp.20, 2009, https://doi.org/10.3390/molecules24203673
  5. An inkjet‐printed sulfonephthalein dye indicator array for volatile amine detection vol.85, pp.2, 2009, https://doi.org/10.1111/1750-3841.15020
  6. PEG-400 assisted Kröhnke synthesis of 2-(2-hydroxyphenyl)-4-arylpyridines annulated by C5-C6 cycles with substituted benzylidene group vol.50, pp.5, 2009, https://doi.org/10.1080/00397911.2019.1706182
  7. Substituted 2‐(ortho‐hydroxyaryl)cyclopenta[ b ]pyridines: Synthesis and Fluorescent Properties under Neutral, Acidic Medium and Solid State vol.6, pp.41, 2009, https://doi.org/10.1002/slct.202103128