References
- James, D. M.; Gilles, H. M. Human Antiparasitic Drugs: Pharmacologyand Usage; John Wiley & Sons: New York, 1996; p 206
- Delescluse, C.; Piechock, M. P.; Ledirac, N.; Hines, R. H.; Li, R.; Gidrol X.; Rahmani, R.; Biochem. Pharmacol. 2001, 61, 399 https://doi.org/10.1016/S0006-2952(00)00562-1
- Lezcano, M.; Soufi, W. A. L.; Novo, M.; Rodriguez-Nunez, E.; Tato, J. V. J. Agric. Chem. 2002, 50, 108 https://doi.org/10.1021/jf010927y
- Frenich, A. G.; Zamora, D. P.; Martinez Vidal, J. L.; Martinez Galera, M. M. Analytica Chimica Acta 2003, 447, 211 https://doi.org/10.1016/S0003-2670(01)01147-3
- Lombardi, M.; Baschini, M.; Torres Sanchez, R. M. Applied Clay Sci. 2003, 24, 43 https://doi.org/10.1016/j.clay.2003.07.005
- Garcia-Reyes, J. F.; Llorent-Martinez, E. J.; Ortega-Barrales, P.; Molina-Diaz, A. Analytica Chimica Acta 2006, 557, 95 https://doi.org/10.1016/j.aca.2005.10.006
- Frenich, A. G.; Zamora, D. P; Martinez Vidal, J. L.; Galera, M. M. Analytical Chimica Acta 2003, 477, 211 https://doi.org/10.1016/S0003-2670(02)01423-X
- Sundaraganesan, N.; Ilakiamani, S.; Subramani, P.; Dominic Joshua, B. Analytical Chimica Acta Part A 2007, 67, 628
- Albrecht, M. A.; Creighton, J. A. J. Am. Chem. Soc. 1977, 99, 5215 https://doi.org/10.1021/ja00457a071
- Moskovits, M. J. Chem. Phys. 1978, 69, 4159 https://doi.org/10.1063/1.437095
- Adrian, F. J. Chem. Phys. Lett. 1981, 78, 45 https://doi.org/10.1016/0009-2614(81)85548-0
- Wang, D. S.; Kerker, M. Phys. Rev. A 1981, 24, 1777
- Joo, S. W.; Han, S. W.; Kim, K. J. Colloid Interface Sci. 2001, 240, 391 https://doi.org/10.1006/jcis.2001.7692
- Jung, Y. M.; Lim, J. W.; Kim, E. R.; Lee, H.; Lee, M. S. Bull. Korean Chem. Soc. 2001, 22, 318
- Jeanette, G. G.; Cook, C.; Koglin, E. J. Raman Spectrosc. 1993, 24, 609 https://doi.org/10.1002/jrs.1250240910
- Mukherjee, K.; Sanchez-Cortes, S.; Garcia-Ramos, J. V. Vibrational Spectroscopy. 2001, 25, 91 https://doi.org/10.1016/S0924-2031(00)00108-9
- Saito, Y.; Wang, J. J.; Smith, D. A.; Batchelder, D. N. Langmuir 2002, 28, 2959 https://doi.org/10.1021/la011554y
- Lee, C. J.;, Kang, J. S.; Kim, M. S.; Lee, K. P.; Lee, M. S. Bull. Korean Chem. Soc. 2004, 25(8), 1212 https://doi.org/10.5012/bkcs.2004.25.8.1211
- Lee, C. J.; Lee, S. Y.; Karim, M. R.; Lee, M. S. Spectrochimica Acta Part A 2007, 68, 1313 https://doi.org/10.1016/j.saa.2007.02.008
- Wingrove, A. S.; Caret, R. L. Organic Chemistry; Harper & Row Publishers: London, 1981; p 185
- Socrates, G. Infrared and Raman Characteristic Group Frequencies; John Wiley & Son, Ltd.: 2001; p 229
- Sundaraganesan, N.; Ilakiamani, S.; Subramani, P.; Dominic Joshua, B. Spectrochimica Acta Part A 2007, 67, 628 https://doi.org/10.1016/j.saa.2006.08.020
- Ni, F.; Cotton, T. M. J. Raman Spectrosc. 1988, 19, 429 https://doi.org/10.1002/jrs.1250190610
- Lee, H. I.; Suh, S. W.; Kim, M. S. J. Raman Spectrosc. 1988, 19, 491 https://doi.org/10.1002/jrs.1250190710
- Millan, J. I.; Garcia-Ramos, J. V.; Sanchez-Cortes, S.; Rodriguez- Amaro, R. J. Raman Spectrosc. 2003, 34, 227 https://doi.org/10.1002/jrs.981
- Leevi, G.; Pantigny, J.; Marsault, J. P.; Aubard, J. J. Raman Spectrosc. 1993, 24, 745 https://doi.org/10.1002/jrs.1250241105
- Oh, S. T.; Kim, K.; Kim, M. S. J. Phys. Chem. 1991, 51, 8844
- Monk, P. S.; Hodgkinson, N. M. Electrochim. Acta 1998, 43, 245 https://doi.org/10.1016/S0013-4686(97)00091-1
- Forster, M.; Girling, R. B.; Hester, R. E. J. Raman Spectrosc. 1982, 12, 36 https://doi.org/10.1002/jrs.1250120107
- Lopez-Ramirez, M. R.; Guerrini, L.; Garcia-Ramos, J. V.; Sanchez- Cortes, S. Vibrational Spectroscopy 2008, 48, 58 https://doi.org/10.1016/j.vibspec.2007.12.003
Cited by
- Rapid atto-molar level detection of surface-enhanced Raman spectroscopy technique based on glycidyl methacrylate-ethylene dimethacrylate (GMA-EDMA) porous material vol.44, pp.7, 2013, https://doi.org/10.1002/jrs.4322
- Detection and quantitative analysis of carbendazim herbicide on Ag nanoparticles via surface-enhanced Raman scattering vol.46, pp.11, 2015, https://doi.org/10.1002/jrs.4737
- A novel method for in situ synthesis of SERS-active gold nanostars on polydimethylsiloxane film vol.53, pp.37, 2017, https://doi.org/10.1039/C7CC01776F
- Quantitative Determination of Thiabendazole in Soil Extracts by Surface-Enhanced Raman Spectroscopy vol.23, pp.8, 2018, https://doi.org/10.3390/molecules23081949
- Tautomerism of a thiabendazole fungicide on Ag and Au nanoparticles investigated by Raman spectroscopy and density functional theory calculations vol.1049, pp.None, 2009, https://doi.org/10.1016/j.molstruc.2013.06.060
- Direct laser writing of random Au nanoparticle three-dimensional structures for highly reproducible micro-SERS measurements vol.4, pp.8, 2009, https://doi.org/10.1039/c3ra46220j
- Rapid determination of thiabendazole in juice by SERS coupled with novel gold nanosubstrates vol.259, pp.None, 2009, https://doi.org/10.1016/j.foodchem.2018.03.105
- Optimisation using the finite element method of a filter-based microfluidic SERS sensor for detection of multiple pesticides in strawberry vol.38, pp.4, 2009, https://doi.org/10.1080/19440049.2021.1881624
- Ag-nanocubes/graphene-oxide/Au-nanoparticles composite film with highly dense plasmonic hotspots for surface-enhanced Raman scattering detection of pesticide vol.165, pp.None, 2021, https://doi.org/10.1016/j.microc.2021.106090
- Quantitative SERS sensor based on self-assembled Au@Ag heterogeneous nanocuboids monolayer with high enhancement factor for practical quantitative detection vol.413, pp.16, 2009, https://doi.org/10.1007/s00216-021-03366-9
- Electrochemical Synthesis of 3D Plasmonic‐Molecule Nanocomposite Materials for In Situ Label‐Free Molecular Detections vol.8, pp.21, 2009, https://doi.org/10.1002/admi.202101201