DOI QR코드

DOI QR Code

Surface-enhanced Raman Spectroscopy of Benzimidazolic Fungicides: Benzimidazole and Thiabendazole

  • Kim, Mak-Soon (Department of Chemistry Education, Kyungpook National University) ;
  • Kim, Min-Kyung (Department of Chemistry Education, Kyungpook National University) ;
  • Lee, Chul-Jae (Division of Chemical Industry, Yeungnam College of Science & Technology) ;
  • Jung, Young-Mee (Department of Chemistry, Kangwon National University) ;
  • Lee, Mu-Sang (Department of Chemistry Education, Kyungpook National University)
  • Published : 2009.12.20

Abstract

Surface-enhanced Raman Scattering (SERS) spectroscopy is applied to the study of the adsorption of benzoimidazolic fungicides benzimidazole (BIZ) and thiabendazole (TBZ) on silver mirrors. The influence of pH on the adsorption mechanism was investigated. In case of BIZ, two different adsorption mechanisms are deduced depending on the experimental conditions: via the $\pi$ electrons of the ring in neutral conditions and through an ionic pairing of protonated nitrogen atom with the chloride adsorbed on the metal surface. The SERS spectra of TBZ revealed that most molecules were adsorbed on silver surface by the ${\pi}$ electrons in neutral and acidic conditions but in acid conditions, some molecules were adsorbed via the sulfur and nitrogen atoms tilted slightly to the surface.

Keywords

References

  1. James, D. M.; Gilles, H. M. Human Antiparasitic Drugs: Pharmacologyand Usage; John Wiley & Sons: New York, 1996; p 206
  2. Delescluse, C.; Piechock, M. P.; Ledirac, N.; Hines, R. H.; Li, R.; Gidrol X.; Rahmani, R.; Biochem. Pharmacol. 2001, 61, 399 https://doi.org/10.1016/S0006-2952(00)00562-1
  3. Lezcano, M.; Soufi, W. A. L.; Novo, M.; Rodriguez-Nunez, E.; Tato, J. V. J. Agric. Chem. 2002, 50, 108 https://doi.org/10.1021/jf010927y
  4. Frenich, A. G.; Zamora, D. P.; Martinez Vidal, J. L.; Martinez Galera, M. M. Analytica Chimica Acta 2003, 447, 211 https://doi.org/10.1016/S0003-2670(01)01147-3
  5. Lombardi, M.; Baschini, M.; Torres Sanchez, R. M. Applied Clay Sci. 2003, 24, 43 https://doi.org/10.1016/j.clay.2003.07.005
  6. Garcia-Reyes, J. F.; Llorent-Martinez, E. J.; Ortega-Barrales, P.; Molina-Diaz, A. Analytica Chimica Acta 2006, 557, 95 https://doi.org/10.1016/j.aca.2005.10.006
  7. Frenich, A. G.; Zamora, D. P; Martinez Vidal, J. L.; Galera, M. M. Analytical Chimica Acta 2003, 477, 211 https://doi.org/10.1016/S0003-2670(02)01423-X
  8. Sundaraganesan, N.; Ilakiamani, S.; Subramani, P.; Dominic Joshua, B. Analytical Chimica Acta Part A 2007, 67, 628
  9. Albrecht, M. A.; Creighton, J. A. J. Am. Chem. Soc. 1977, 99, 5215 https://doi.org/10.1021/ja00457a071
  10. Moskovits, M. J. Chem. Phys. 1978, 69, 4159 https://doi.org/10.1063/1.437095
  11. Adrian, F. J. Chem. Phys. Lett. 1981, 78, 45 https://doi.org/10.1016/0009-2614(81)85548-0
  12. Wang, D. S.; Kerker, M. Phys. Rev. A 1981, 24, 1777
  13. Joo, S. W.; Han, S. W.; Kim, K. J. Colloid Interface Sci. 2001, 240, 391 https://doi.org/10.1006/jcis.2001.7692
  14. Jung, Y. M.; Lim, J. W.; Kim, E. R.; Lee, H.; Lee, M. S. Bull. Korean Chem. Soc. 2001, 22, 318
  15. Jeanette, G. G.; Cook, C.; Koglin, E. J. Raman Spectrosc. 1993, 24, 609 https://doi.org/10.1002/jrs.1250240910
  16. Mukherjee, K.; Sanchez-Cortes, S.; Garcia-Ramos, J. V. Vibrational Spectroscopy. 2001, 25, 91 https://doi.org/10.1016/S0924-2031(00)00108-9
  17. Saito, Y.; Wang, J. J.; Smith, D. A.; Batchelder, D. N. Langmuir 2002, 28, 2959 https://doi.org/10.1021/la011554y
  18. Lee, C. J.;, Kang, J. S.; Kim, M. S.; Lee, K. P.; Lee, M. S. Bull. Korean Chem. Soc. 2004, 25(8), 1212 https://doi.org/10.5012/bkcs.2004.25.8.1211
  19. Lee, C. J.; Lee, S. Y.; Karim, M. R.; Lee, M. S. Spectrochimica Acta Part A 2007, 68, 1313 https://doi.org/10.1016/j.saa.2007.02.008
  20. Wingrove, A. S.; Caret, R. L. Organic Chemistry; Harper & Row Publishers: London, 1981; p 185
  21. Socrates, G. Infrared and Raman Characteristic Group Frequencies; John Wiley & Son, Ltd.: 2001; p 229
  22. Sundaraganesan, N.; Ilakiamani, S.; Subramani, P.; Dominic Joshua, B. Spectrochimica Acta Part A 2007, 67, 628 https://doi.org/10.1016/j.saa.2006.08.020
  23. Ni, F.; Cotton, T. M. J. Raman Spectrosc. 1988, 19, 429 https://doi.org/10.1002/jrs.1250190610
  24. Lee, H. I.; Suh, S. W.; Kim, M. S. J. Raman Spectrosc. 1988, 19, 491 https://doi.org/10.1002/jrs.1250190710
  25. Millan, J. I.; Garcia-Ramos, J. V.; Sanchez-Cortes, S.; Rodriguez- Amaro, R. J. Raman Spectrosc. 2003, 34, 227 https://doi.org/10.1002/jrs.981
  26. Leevi, G.; Pantigny, J.; Marsault, J. P.; Aubard, J. J. Raman Spectrosc. 1993, 24, 745 https://doi.org/10.1002/jrs.1250241105
  27. Oh, S. T.; Kim, K.; Kim, M. S. J. Phys. Chem. 1991, 51, 8844
  28. Monk, P. S.; Hodgkinson, N. M. Electrochim. Acta 1998, 43, 245 https://doi.org/10.1016/S0013-4686(97)00091-1
  29. Forster, M.; Girling, R. B.; Hester, R. E. J. Raman Spectrosc. 1982, 12, 36 https://doi.org/10.1002/jrs.1250120107
  30. Lopez-Ramirez, M. R.; Guerrini, L.; Garcia-Ramos, J. V.; Sanchez- Cortes, S. Vibrational Spectroscopy 2008, 48, 58 https://doi.org/10.1016/j.vibspec.2007.12.003

Cited by

  1. Rapid atto-molar level detection of surface-enhanced Raman spectroscopy technique based on glycidyl methacrylate-ethylene dimethacrylate (GMA-EDMA) porous material vol.44, pp.7, 2013, https://doi.org/10.1002/jrs.4322
  2. Detection and quantitative analysis of carbendazim herbicide on Ag nanoparticles via surface-enhanced Raman scattering vol.46, pp.11, 2015, https://doi.org/10.1002/jrs.4737
  3. A novel method for in situ synthesis of SERS-active gold nanostars on polydimethylsiloxane film vol.53, pp.37, 2017, https://doi.org/10.1039/C7CC01776F
  4. Quantitative Determination of Thiabendazole in Soil Extracts by Surface-Enhanced Raman Spectroscopy vol.23, pp.8, 2018, https://doi.org/10.3390/molecules23081949
  5. Tautomerism of a thiabendazole fungicide on Ag and Au nanoparticles investigated by Raman spectroscopy and density functional theory calculations vol.1049, pp.None, 2009, https://doi.org/10.1016/j.molstruc.2013.06.060
  6. Direct laser writing of random Au nanoparticle three-dimensional structures for highly reproducible micro-SERS measurements vol.4, pp.8, 2009, https://doi.org/10.1039/c3ra46220j
  7. Rapid determination of thiabendazole in juice by SERS coupled with novel gold nanosubstrates vol.259, pp.None, 2009, https://doi.org/10.1016/j.foodchem.2018.03.105
  8. Optimisation using the finite element method of a filter-based microfluidic SERS sensor for detection of multiple pesticides in strawberry vol.38, pp.4, 2009, https://doi.org/10.1080/19440049.2021.1881624
  9. Ag-nanocubes/graphene-oxide/Au-nanoparticles composite film with highly dense plasmonic hotspots for surface-enhanced Raman scattering detection of pesticide vol.165, pp.None, 2021, https://doi.org/10.1016/j.microc.2021.106090
  10. Quantitative SERS sensor based on self-assembled Au@Ag heterogeneous nanocuboids monolayer with high enhancement factor for practical quantitative detection vol.413, pp.16, 2009, https://doi.org/10.1007/s00216-021-03366-9
  11. Electrochemical Synthesis of 3D Plasmonic‐Molecule Nanocomposite Materials for In Situ Label‐Free Molecular Detections vol.8, pp.21, 2009, https://doi.org/10.1002/admi.202101201