DOI QR코드

DOI QR Code

Density Functional Theoretical Study on the Hydricities of Transition Metal Hydride Complexes in Water

  • Kang, Suk-Bok (Department of Statistics, Yeungnam University) ;
  • Cho, Young-Seuk (Department of Statistics, Pusan National University) ;
  • Hwang, Sun-Gu (Department of Nanomedical Engineering, Pusan National University)
  • Published : 2009.12.20

Abstract

The hydricities of d$^6$ metal hydride complexes in aqueous solution were calculated by using density functional theoretical (DFT) calculations coupled with a Poisson-Boltzmann (PB) solvent model. Hydricity describes the hydride donor ability of the metal-hydrogen bond, which assists in the study of the mechanism of many catalytic processes and chemical reactions that involve transition metal hydrides. The calculation scheme produced hydricity values that were in good agreement with experimental estimation. The inclusion of a water molecule as a weakly bound ligand to five-coordinate metal complexes gave an improved correlation result.

Keywords

References

  1. Creutz, C.; Chou, M. H. J. Am. Chem. Soc. 2009, 131, 2794 https://doi.org/10.1021/ja809724s
  2. Alajarn, M.; Bonillo, B.; Ortn, M.-M.; Snchez-Andrada, P.; Vidal, Á. Org. Lett. 2006, 8, 5645 https://doi.org/10.1021/ol062373w
  3. Mayr, H.; Lang, G.; Ofial, A. R. J. Am. Chem. Soc. 2002, 124, 4076 https://doi.org/10.1021/ja0121538
  4. Hayashi, H.; Ogo, S.; Abura, T.; Fukuzumi, S. J. Am. Chem. Soc. 2003, 125, 14266 https://doi.org/10.1021/ja036117f
  5. Qi, X.-J.; Fu, Y.; Liu, L.; Guo, Q.-X. Organometallics 2007, 26, 4197 https://doi.org/10.1021/om0702429
  6. Bakac, A. Dalton Trans. 2006, 1589 https://doi.org/10.1039/b518230a
  7. Fu, X.; Li, S.; Wayland, B. B. Inorg. Chem. 2006, 45, 9884 https://doi.org/10.1021/ic0615022
  8. Hwang, S.; Jang, Y. H.; Chung, D. S. Bull. Korean Chem. Soc. 2005, 26, 585 https://doi.org/10.5012/bkcs.2005.26.4.585
  9. Jang, Y. H.; Goddard III, W. A.; Noyes, K. T.; Sowers, L. C.; Hwang, S.; Chung, D. S. Chem. Res. Toxicol. 2002, 15, 1023 https://doi.org/10.1021/tx010146r
  10. Jang, Y. H.; Goddard III, W. A.; Noyes, K. T.; Sowers, L. C.; Hwang, S.; Chung, D. S. J. Phys. Chem. B 2003, 107, 344 https://doi.org/10.1021/jp020774x
  11. Jang, Y. H.; Hwang, S.; Chung, D. S. Chem. Lett. 2007, 36, 1496 https://doi.org/10.1246/cl.2007.1496
  12. Rogstad, K. N.; Jang, Y. H.; Sowers, L. C.; Goddard III, W. A. Chem. Res. Toxicol. 2003, 16, 1455 https://doi.org/10.1021/tx034068e
  13. Schrodinger. Jaguar; v 5.5; Schrodinger: Portland, OR, 1991-2003
  14. Becke, A. D. Phys. Rev. A 1988, 38, 3098 https://doi.org/10.1103/PhysRevA.38.3098
  15. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785 https://doi.org/10.1103/PhysRevB.37.785
  16. Slater, J. C. The Self-Consistent Field for Molecules and Solids; McGraw-Hill: New York, 1974
  17. Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200 https://doi.org/10.1139/p80-159
  18. Honig, B.; Nicholls, A. Science 1995, 268, 1144 https://doi.org/10.1126/science.7761829
  19. Marten, B.; Kim, K.; Cortis, C.; Friesner, R. A.; Murphy, R. B.; Ringnalda, M. N.; Sitkoff, D.; Honig, B. J. Phys. Chem. 1996, 100, 11775 https://doi.org/10.1021/jp953087x
  20. Tannor, D. J.; Marten, B.; Murphy, R.; Friesner, R. A.; Sitkoff, D.; Nicholls, A.; Ringnalda, M. N.; Goddard III, W. A.; Honig, B. J. Am. Chem. Soc. 1994, 116, 11875 https://doi.org/10.1021/ja00105a030
  21. Kovcs, G.; Ppai, I. Organometallics 2006, 25, 820 https://doi.org/10.1021/om050726+

Cited by

  1. H (M = Fe, Ru, and Os) in Acetonitrile vol.33, pp.4, 2012, https://doi.org/10.5012/bkcs.2012.33.4.1413
  2. Addition vol.53, pp.23, 2014, https://doi.org/10.1021/ic5015829
  3. Thermodynamic and kinetic hydricities of metal-free hydrides vol.47, pp.8, 2018, https://doi.org/10.1039/C7CS00171A
  4. Density Functional Theoretical Study on the Reduction Potentials of Catechols in Water vol.33, pp.11, 2009, https://doi.org/10.5012/bkcs.2012.33.11.3889
  5. Solvation Effects on Transition Metal Hydricity vol.137, pp.44, 2015, https://doi.org/10.1021/jacs.5b07777