DOI QR코드

DOI QR Code

Effect of Basis Set Superposition Error on the MP2 Relative Energies of Gold Cluster Au6

  • Published : 2009.04.20

Abstract

We have studied the structures and stabilities of Au6 to explore the origin of the large discrepancy between relative energies obtained from the density functional theory (DFT) and ab initio correlated levels of theory. The MP2 methods significantly overestimate the stability of the non-planar isomer when the double-$\zeta$ polarization quality of basis sets, such as LANL2DZ+1f and CEP31G+1f, are used. However, we show that such preference for the non-planar structure at the MP2 level mainly originates from the large basis set superposition error.

Keywords

References

  1. Schwerdtfeger, P. Angew. Chem. Int. Ed. 2003, 43, 1892.
  2. Daniel, M.-C.; Astruc, D. Chem. Rev. 2004, 104, 293. https://doi.org/10.1021/cr030698+
  3. Pyykk$\ddot{o}$, P. Angew. Chem. Int. Ed. 2004, 43, 4412. https://doi.org/10.1002/anie.200300624
  4. Pyykk$\ddot{o}$, P. Inorg. Chim. Acta 2005, 358, 4113. https://doi.org/10.1016/j.ica.2005.06.028
  5. Haruta, M. Catal. Today 1997, 36, 153. https://doi.org/10.1016/S0920-5861(96)00208-8
  6. Sanchez, A.; Abbet, S.; Heiz, U.; Schneider, W.-D.; H$\ddot{a}$kkinen, H.; Barnett, R. N.; Landman, U. J. Phys. Chem. A 1999, 103, 9573. https://doi.org/10.1021/jp9935992
  7. Yoon, B.; H$\ddot{a}$kkinen, H.; Landman, U.; W$\ddot{o}$rz, A. S.; Antonietti, J.-M.; Abbet, S.; Judai, K.; Heiz, U. Science 2005, 307, 403. https://doi.org/10.1126/science.1104168
  8. H$\ddot{a}$kkinen, H.; Landman, U. Phys. Rev. B 2000, 62, R2287. https://doi.org/10.1103/PhysRevB.62.R2287
  9. Wang, J.; Wang, G.; Zhao, J. Phys. Rev. B 2002, 66, 035418. https://doi.org/10.1103/PhysRevB.66.035418
  10. H$\ddot{a}$kkinen, H.; Moseler, M.; Landman, U. Phys. Rev. Lett. 2002, 89, 033401. https://doi.org/10.1103/PhysRevLett.89.033401
  11. Gilb, S.; Weis, P.; Furche, F.; Ahlrichs, R.; Kappes, M. M. J. Chem. Phys. 2002, 116, 4094. https://doi.org/10.1063/1.1445121
  12. Bona cic-Koutecky, V.; Burda, J.; Mitric, R.; Ge, M.; Zampella, G.; Fantucci, P. J. Chem. Phys. 2002, 117, 3120. https://doi.org/10.1063/1.1492800
  13. Furche, F.; Ahlrichs, R.; Weis, P.; Jacob, C.; Gilb, S.; Bierweiler, T.; Kappes, M. M. J. Chem. Phys. 2002, 117, 6982. https://doi.org/10.1063/1.1507582
  14. Lee, H. M.; Ge, M.; Sahu, B. R.; Tarakeshwar, P.; Kim, K. S. J. Phys. Chem. B 2003, 107, 9994. https://doi.org/10.1021/jp034826+
  15. H$\ddot{a}$kkinen, H.; Yoon, B.; Landman, U.; Li, X.; Zhai, H.-J.; Wang, L.-S. J. Phys. Chem. A 2003, 107, 6168. https://doi.org/10.1021/jp035437i
  16. Xiao, L.; Wang, L. Chem. Phys. Lett. 2004, 392, 452. https://doi.org/10.1016/j.cplett.2004.05.095
  17. Fernandez, E. M.; Soler, J. M.; Garzón, I. L.; Balbas, L. C. Phys. Rev. B 2004, 70, 165403. https://doi.org/10.1103/PhysRevB.70.165403
  18. Olson, R. M.; Varganov, S.; Gordon, M. S.; Metiu, H.; Chretien, S.; Piecuch, P.; Kowalski, K.; Kucharski, S. A.; Musial, M. J. Am. Chem. Soc. 2005, 127, 1049. https://doi.org/10.1021/ja040197l
  19. Gronbeck, H.; Broqvist, P. Phys. Rev. B 2005, 71, 073408. https://doi.org/10.1103/PhysRevB.71.073408
  20. Fernandez, E. M.; Soler, J. M.; Garzón, I. L.; Balbas, L. C. Int. J. Quantum Chem. 2005, 101, 740. https://doi.org/10.1002/qua.20331
  21. Fernandez, E. M.; Ordejon, P.; Balbas, L. C. Chem. Phys. Lett. 2005, 408, 252. https://doi.org/10.1016/j.cplett.2005.04.058
  22. Remancle, F.; Kryachko, E. S. J. Chem. Phys. 2005, 122, 044304. https://doi.org/10.1063/1.1830451
  23. Walker, A. V. J. Chem. Phys. 2005, 122, 094310. https://doi.org/10.1063/1.1857478
  24. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiohais, C. Phys. Rev. B 1992, 46, 6671. https://doi.org/10.1103/PhysRevB.46.6671
  25. Perdew, J. P.; Burke, K.; Wang, Y. Phys. Rev. B 1996, 54, 16533. https://doi.org/10.1103/PhysRevB.54.16533
  26. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  27. Stevens, W. J.; Krauss, M.; Basch, H.; Jasien, P. G. Can. J. Chem. 1992, 70, 612. https://doi.org/10.1139/v92-085
  28. Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299. https://doi.org/10.1063/1.448975
  29. Andrea, D.; H$\ddot{a}$ussermann, U.; Dolg, M.; Stoll, H. Theor. Chim. Acta 1990, 77, 123. https://doi.org/10.1007/BF01114537
  30. Moller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618. https://doi.org/10.1103/PhysRev.46.618
  31. Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. c. 1989, 157, 479. https://doi.org/10.1016/S0009-2614(89)87395-6
  32. Bartlett, R. J.; Watts, J. W.; Kucharski, S. A.; Noga, J. Chem. Phys. Lett. 1990, 165, 513. https://doi.org/10.1016/0009-2614(90)87031-L
  33. Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553. https://doi.org/10.1080/00268977000101561
  34. Simon, S.; Duran, M.; Dannenberg, J. J. J. Chem. Phys. 1996, 105, 11024. https://doi.org/10.1063/1.472902
  35. Frisch, M. J. et al. GAUSSIAN 03, Revision B2; Gaussian Inc.: Pittsburgh, PA, 2003.
  36. Lee, T. J.; Taylor, P. R. Int. J. Quantum Chem. Symp. 1989, 23, 199.
  37. Jensen, F. Chem. Phys. Lett. 1996, 261, 633. https://doi.org/10.1016/0009-2614(96)01033-0
  38. Huber, K. P.; Herzberg, G. Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules; Van Nostrand: New York, 1979.
  39. Hess, B. A.; Kaldor, U. J. Chem. Phys. 2000, 112, 1809. https://doi.org/10.1063/1.480744
  40. Wang, F.; Liu, W. Chem. Phys. 2005, 311, 63. https://doi.org/10.1016/j.chemphys.2004.10.019
  41. de Jong, G. Th.; Sola, M.; Visscher, L.; Bickelhaupt, F. M. J. Chem. Phys. 2004, 121, 9982. https://doi.org/10.1063/1.1792151
  42. Han, Y.-K. J. Chem. Phys. 2006, 124, 024316. https://doi.org/10.1063/1.2150814

Cited by

  1. Performance of Density Functionals for the Calculation of Gold Clusters vol.32, pp.8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.2802
  2. ′-diphenylurea Conformations vol.118, pp.28, 2014, https://doi.org/10.1021/jp503539m
  3. Photophysical Properties of Chlorotriethylphosphinegold(I) vol.31, pp.8, 2010, https://doi.org/10.5012/bkcs.2010.31.8.2151