References
- Mizoguchi, H.; Ueda, K.; Orita, M.; Moon, S.-C.; Kajihara, K.; Hirano, M.; Hosono, H. Mater. Res. Bull. 2000, 37, 2401 https://doi.org/10.1016/S0025-5408(02)00974-1
- Ye, J.; Zou, Z.; Matsushita, A. Int. J. Hydrogen Energy 2003, 28, 651 https://doi.org/10.1016/S0360-3199(02)00158-1
- Hara, M.; Takata, T.; Kondo, J. N.; Domen, K. Catal. Today 2004, 90, 313 https://doi.org/10.1016/j.cattod.2004.04.040
- Hara, M.; Hitoki, G.; Takata, T.; Kondo, J. N.; Kobayashi, H.; Domen, K. Catal. Today 2003, 78, 555 https://doi.org/10.1016/S0920-5861(02)00354-1
- Yamasita, D.; Takata, T.; Hara, M.; Kondo, J. N.; Domen, K. Solid State Ionics 2004, 172, 591 https://doi.org/10.1016/j.ssi.2004.04.033
- Jang, J. S.; Kim, H. G.; Reddy, V. R.; Bae, S. W.; Ji, S. M.; Lee, J. S. J. Catal. 2005, 231, 213 https://doi.org/10.1016/j.jcat.2005.01.026
- Park, J.-W.; Kang, M. Int. J. Hydrogen Energy 2007, 32, 4840 https://doi.org/10.1016/j.ijhydene.2007.07.045
- Choi, H.-J.; Kang, M. Int. J. Hydrogen Energy 2007, 32, 3841 https://doi.org/10.1016/j.ijhydene.2007.05.011
- Jeon, M.-K.; Park, J.-W.; Kang, M. J. Ind. Eng. Chem. 2007, 13, 84
- Park, M.-S.; Kang, M. Mater. Lett. 2008, 62, 183 https://doi.org/10.1016/j.matlet.2007.04.105
- Zou, J.-J.; He, H.; Cui, L.; Du, H.-Y. Int. J. Hydrogen Energy 2007, 32, 1762 https://doi.org/10.1016/j.ijhydene.2006.11.030
- Ikuma, Y.; Bessho, H. Int. J. Hydrogen Energy 2007, 32, 2689 https://doi.org/10.1016/j.ijhydene.2006.09.024
- Yang, Y. Z.; Chang, C.-H.; Idriss, H. Appl. Catal. B: Environ. 2006, 67, 217 https://doi.org/10.1016/j.apcatb.2006.05.007
- Lee, J. H.; Nam, W. S.; Kang, M.; Han, G. Y.; Kim, M.-S.; Ogino, K.; Miyata, S.; Choung, S.-J. Appl. Catal. A: General 2003, 244, 49 https://doi.org/10.1016/S0926-860X(02)00592-6
- Wu, N.-L.; Lee, M.-S.; Pon, Z.-J.; Hsu, J.-Z. J. Photochem. Photobiol. A: Chem. 2004, 163, 277 https://doi.org/10.1016/j.jphotochem.2003.12.009
- Mouider, J. F.; Stickle, W. F.; Soboi, P. E.; Bomben, K. D. Handbook of X-ray photoelectron spectroscopy; Perkin-Elmer Coporation: USA, 1992; p 118
Cited by
- Visible-Light-Driven Photocatalyst: The Essential Role of Oxygen Vacancy vol.80, pp.11, 2011, https://doi.org/10.1143/JPSJ.80.114706
- by Promoted LSPR vol.116, pp.50, 2012, https://doi.org/10.1021/jp309901y
- High-Efficiently Photoelectrochemical Hydrogen Production over Zn-Incorporated Nanotubes vol.2012, pp.1687-529X, 2012, https://doi.org/10.1155/2012/843042
- The effect of metal-doped TiO2 nanoparticles on zebrafish embryogenesis vol.10, pp.3, 2014, https://doi.org/10.1007/s13273-014-0033-8
- Understanding the superior photocatalytic activity of noble metals modified titania under UV and visible light irradiation vol.16, pp.16, 2014, https://doi.org/10.1039/c3cp54411g
- Composite Microspheres vol.6, pp.22, 2014, https://doi.org/10.1021/am505720a
- Production from Water Splitting vol.120, pp.31, 2016, https://doi.org/10.1021/acs.jpcc.6b04695
- Enhancement of photocatalytic disinfection of surface modified rutile TiO2 nanocatalyst vol.33, pp.8, 2016, https://doi.org/10.1007/s11814-016-0117-3
- production by the photocatalytic reforming of cellulose and raw biomass using Ni, Pd, Pt and Au on titania vol.472, pp.2191, 2016, https://doi.org/10.1098/rspa.2016.0054
- nanotubes powders prepared via rapid breakdown anodization sensitized with Pt, Pd and Ni nanoparticles vol.33, pp.4, 2018, https://doi.org/10.1080/10667857.2018.1433349
- Photocatalytic Activity of the Iron-Containing Natural Composites in the Reaction of Oxidative Destruction of Oxalic Acid and Phenol vol.5, pp.1, 2018, https://doi.org/10.3390/environments5010016
- Oxidative Destruction of Organic Pollutants on the Polypropylene Fiber Modified by Nanodispersed Iron vol.5, pp.7, 2018, https://doi.org/10.3390/environments5070082
- Plasmonic Photocatalyst for H2 Evolution in Photocatalytic Water Splitting vol.115, pp.1, 2009, https://doi.org/10.1021/jp1074048
- Production and Enhancement of Hydrogen From Water: A Review vol.134, pp.3, 2012, https://doi.org/10.1115/1.4006432
- A Newly Designed a TiO2-Loaded Spherical ZnS Nano/Micro-Composites for High Hydrogen Production from Methanol/Water Solution Photo-Splitting vol.33, pp.7, 2009, https://doi.org/10.5012/bkcs.2012.33.7.2133
- A new route for the fabrication of an ultrathin film of a PdO–TiO2 composite photocatalyst vol.41, pp.39, 2009, https://doi.org/10.1039/c2dt31263h
- Cerium doped nanotitania-extended spectral response for enhanced photocatalysis vol.1, pp.1, 2014, https://doi.org/10.1088/2053-1591/1/1/015003
- Palladium nanoparticles anchored to anatase TiO 2 for enhanced surface plasmon resonance-stimulated, visible-light-driven photocatalytic activity vol.6, pp.None, 2009, https://doi.org/10.3762/bjnano.6.43
- Structural and photocatalytic properties of Pd-deposited semiconductors with different morphology vol.7, pp.88, 2017, https://doi.org/10.1039/c7ra11080d
- Reliable and Flow Independent Hydrogen Sensor Based on Microwave-Assisted ZnO Nanospheres: Improved Sensing Performance Under UV Light at Room Temperature vol.18, pp.5, 2009, https://doi.org/10.1109/jsen.2017.2788404
- Mechanistic insights into plasmonic photocatalysts in utilizing visible light vol.9, pp.None, 2009, https://doi.org/10.3762/bjnano.9.59
- Advances towards the utilization of Vis-NIR light energy by coating YF3:Yb3+,Er3+ over ZnS microspheres triggering hydrogen production and pollutants disposal vol.7, pp.26, 2009, https://doi.org/10.1039/c9tc02068c
- Effect of Pd concentration on the structural, morphological and photodiode properties of TiO2 nanoparticles vol.31, pp.1, 2009, https://doi.org/10.1007/s10854-019-01095-5
- Acceleration of ammonium phosphate hydrolysis using TiO2 microspheres as a catalyst for hydrogen production vol.2, pp.5, 2009, https://doi.org/10.1039/d0na00204f
- Influence of Photo-Deposited Pt and Pd onto Chromium Doped TiO2 Nanotubes in Photo-Electrochemical Water Splitting for Hydrogen Generation vol.11, pp.2, 2009, https://doi.org/10.3390/catal11020212