DOI QR코드

DOI QR Code

Enhanced Hydrogen Production from Methanol/Water Photo-Splitting in TiO2 Including Pd Component

  • Kwak, Byeong-Sub (Department of Chemistry, College of Science, Yeungnam University) ;
  • Chae, Jin-Ho (Department of Chemistry, College of Science, Yeungnam University) ;
  • Kim, Ji-Yeon (Department of Chemistry, College of Science, Yeungnam University) ;
  • Kang, Mi-Sook (Department of Chemistry, College of Science, Yeungnam University)
  • Published : 2009.05.20

Abstract

The future use of hydrogen as an energy source is expected to increase on account of its environmentally friendliness. In order to enhance the production of hydrogen, Pd ions (0.01, 0.05, 0.1, and 0.5 mol%) were incorporated $TiO_2$ (Pd-$TiO_2$) and used as a photocatalyst. The UV-visible absorbance decreased with increasing level of palladium incorporation without a wavelength shift. Although all the absorption plots showed excitation characteristics, there was an asymmetric tail observed towards a higher wavelength caused by scattering. However, the intensity of the photoluminescence (PL) curves of Pd-$TiO_2$ was smaller, with the smallest case being observed at 0.1 and 0.5 mol% Pd-$TiO_2$, which was attributedto recombination between the excited electrons and holes. Based on these optical characteristics, the evolution of $H_2$ from methanol/water (1:1) photo-splitting over Pd-$TiO_2$ in the liquid system was enhanced, compared with that over pure $TiO_2$. In particular, 2.4 mL of $H_2$ gas was produced after 8 h when 0.5 g of a 1.0 mol% Pd-$TiO_2$ catalyst was used. $H_2$ was stably evolved even after 28 h without catalytic deactivation, and the amount of $H_2$ produced reached 14.5 mL after 28 h. This is in contrast to the case of the Pd 0.1 mol% impregnated $TiO_2$ of $H_2$ evolution of 17.5 mL due to the more decreasedelectron-hole recombination.

Keywords

References

  1. Mizoguchi, H.; Ueda, K.; Orita, M.; Moon, S.-C.; Kajihara, K.; Hirano, M.; Hosono, H. Mater. Res. Bull. 2000, 37, 2401 https://doi.org/10.1016/S0025-5408(02)00974-1
  2. Ye, J.; Zou, Z.; Matsushita, A. Int. J. Hydrogen Energy 2003, 28, 651 https://doi.org/10.1016/S0360-3199(02)00158-1
  3. Hara, M.; Takata, T.; Kondo, J. N.; Domen, K. Catal. Today 2004, 90, 313 https://doi.org/10.1016/j.cattod.2004.04.040
  4. Hara, M.; Hitoki, G.; Takata, T.; Kondo, J. N.; Kobayashi, H.; Domen, K. Catal. Today 2003, 78, 555 https://doi.org/10.1016/S0920-5861(02)00354-1
  5. Yamasita, D.; Takata, T.; Hara, M.; Kondo, J. N.; Domen, K. Solid State Ionics 2004, 172, 591 https://doi.org/10.1016/j.ssi.2004.04.033
  6. Jang, J. S.; Kim, H. G.; Reddy, V. R.; Bae, S. W.; Ji, S. M.; Lee, J. S. J. Catal. 2005, 231, 213 https://doi.org/10.1016/j.jcat.2005.01.026
  7. Park, J.-W.; Kang, M. Int. J. Hydrogen Energy 2007, 32, 4840 https://doi.org/10.1016/j.ijhydene.2007.07.045
  8. Choi, H.-J.; Kang, M. Int. J. Hydrogen Energy 2007, 32, 3841 https://doi.org/10.1016/j.ijhydene.2007.05.011
  9. Jeon, M.-K.; Park, J.-W.; Kang, M. J. Ind. Eng. Chem. 2007, 13, 84
  10. Park, M.-S.; Kang, M. Mater. Lett. 2008, 62, 183 https://doi.org/10.1016/j.matlet.2007.04.105
  11. Zou, J.-J.; He, H.; Cui, L.; Du, H.-Y. Int. J. Hydrogen Energy 2007, 32, 1762 https://doi.org/10.1016/j.ijhydene.2006.11.030
  12. Ikuma, Y.; Bessho, H. Int. J. Hydrogen Energy 2007, 32, 2689 https://doi.org/10.1016/j.ijhydene.2006.09.024
  13. Yang, Y. Z.; Chang, C.-H.; Idriss, H. Appl. Catal. B: Environ. 2006, 67, 217 https://doi.org/10.1016/j.apcatb.2006.05.007
  14. Lee, J. H.; Nam, W. S.; Kang, M.; Han, G. Y.; Kim, M.-S.; Ogino, K.; Miyata, S.; Choung, S.-J. Appl. Catal. A: General 2003, 244, 49 https://doi.org/10.1016/S0926-860X(02)00592-6
  15. Wu, N.-L.; Lee, M.-S.; Pon, Z.-J.; Hsu, J.-Z. J. Photochem. Photobiol. A: Chem. 2004, 163, 277 https://doi.org/10.1016/j.jphotochem.2003.12.009
  16. Mouider, J. F.; Stickle, W. F.; Soboi, P. E.; Bomben, K. D. Handbook of X-ray photoelectron spectroscopy; Perkin-Elmer Coporation: USA, 1992; p 118

Cited by

  1. Visible-Light-Driven Photocatalyst: The Essential Role of Oxygen Vacancy vol.80, pp.11, 2011, https://doi.org/10.1143/JPSJ.80.114706
  2. by Promoted LSPR vol.116, pp.50, 2012, https://doi.org/10.1021/jp309901y
  3. High-Efficiently Photoelectrochemical Hydrogen Production over Zn-Incorporated Nanotubes vol.2012, pp.1687-529X, 2012, https://doi.org/10.1155/2012/843042
  4. The effect of metal-doped TiO2 nanoparticles on zebrafish embryogenesis vol.10, pp.3, 2014, https://doi.org/10.1007/s13273-014-0033-8
  5. Understanding the superior photocatalytic activity of noble metals modified titania under UV and visible light irradiation vol.16, pp.16, 2014, https://doi.org/10.1039/c3cp54411g
  6. Composite Microspheres vol.6, pp.22, 2014, https://doi.org/10.1021/am505720a
  7. Production from Water Splitting vol.120, pp.31, 2016, https://doi.org/10.1021/acs.jpcc.6b04695
  8. Enhancement of photocatalytic disinfection of surface modified rutile TiO2 nanocatalyst vol.33, pp.8, 2016, https://doi.org/10.1007/s11814-016-0117-3
  9. production by the photocatalytic reforming of cellulose and raw biomass using Ni, Pd, Pt and Au on titania vol.472, pp.2191, 2016, https://doi.org/10.1098/rspa.2016.0054
  10. nanotubes powders prepared via rapid breakdown anodization sensitized with Pt, Pd and Ni nanoparticles vol.33, pp.4, 2018, https://doi.org/10.1080/10667857.2018.1433349
  11. Photocatalytic Activity of the Iron-Containing Natural Composites in the Reaction of Oxidative Destruction of Oxalic Acid and Phenol vol.5, pp.1, 2018, https://doi.org/10.3390/environments5010016
  12. Oxidative Destruction of Organic Pollutants on the Polypropylene Fiber Modified by Nanodispersed Iron vol.5, pp.7, 2018, https://doi.org/10.3390/environments5070082
  13. Plasmonic Photocatalyst for H2 Evolution in Photocatalytic Water Splitting vol.115, pp.1, 2009, https://doi.org/10.1021/jp1074048
  14. Production and Enhancement of Hydrogen From Water: A Review vol.134, pp.3, 2012, https://doi.org/10.1115/1.4006432
  15. A Newly Designed a TiO2-Loaded Spherical ZnS Nano/Micro-Composites for High Hydrogen Production from Methanol/Water Solution Photo-Splitting vol.33, pp.7, 2009, https://doi.org/10.5012/bkcs.2012.33.7.2133
  16. A new route for the fabrication of an ultrathin film of a PdO–TiO2 composite photocatalyst vol.41, pp.39, 2009, https://doi.org/10.1039/c2dt31263h
  17. Cerium doped nanotitania-extended spectral response for enhanced photocatalysis vol.1, pp.1, 2014, https://doi.org/10.1088/2053-1591/1/1/015003
  18. Palladium nanoparticles anchored to anatase TiO 2 for enhanced surface plasmon resonance-stimulated, visible-light-driven photocatalytic activity vol.6, pp.None, 2009, https://doi.org/10.3762/bjnano.6.43
  19. Structural and photocatalytic properties of Pd-deposited semiconductors with different morphology vol.7, pp.88, 2017, https://doi.org/10.1039/c7ra11080d
  20. Reliable and Flow Independent Hydrogen Sensor Based on Microwave-Assisted ZnO Nanospheres: Improved Sensing Performance Under UV Light at Room Temperature vol.18, pp.5, 2009, https://doi.org/10.1109/jsen.2017.2788404
  21. Mechanistic insights into plasmonic photocatalysts in utilizing visible light vol.9, pp.None, 2009, https://doi.org/10.3762/bjnano.9.59
  22. Advances towards the utilization of Vis-NIR light energy by coating YF3:Yb3+,Er3+ over ZnS microspheres triggering hydrogen production and pollutants disposal vol.7, pp.26, 2009, https://doi.org/10.1039/c9tc02068c
  23. Effect of Pd concentration on the structural, morphological and photodiode properties of TiO2 nanoparticles vol.31, pp.1, 2009, https://doi.org/10.1007/s10854-019-01095-5
  24. Acceleration of ammonium phosphate hydrolysis using TiO2 microspheres as a catalyst for hydrogen production vol.2, pp.5, 2009, https://doi.org/10.1039/d0na00204f
  25. Influence of Photo-Deposited Pt and Pd onto Chromium Doped TiO2 Nanotubes in Photo-Electrochemical Water Splitting for Hydrogen Generation vol.11, pp.2, 2009, https://doi.org/10.3390/catal11020212