• 제목/요약/키워드: Pd-impregnated $TiO_{2}$

검색결과 2건 처리시간 0.015초

Enhanced Hydrogen Production from Methanol/Water Photo-Splitting in TiO2 Including Pd Component

  • Kwak, Byeong-Sub;Chae, Jin-Ho;Kim, Ji-Yeon;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권5호
    • /
    • pp.1047-1053
    • /
    • 2009
  • The future use of hydrogen as an energy source is expected to increase on account of its environmentally friendliness. In order to enhance the production of hydrogen, Pd ions (0.01, 0.05, 0.1, and 0.5 mol%) were incorporated $TiO_2$ (Pd-$TiO_2$) and used as a photocatalyst. The UV-visible absorbance decreased with increasing level of palladium incorporation without a wavelength shift. Although all the absorption plots showed excitation characteristics, there was an asymmetric tail observed towards a higher wavelength caused by scattering. However, the intensity of the photoluminescence (PL) curves of Pd-$TiO_2$ was smaller, with the smallest case being observed at 0.1 and 0.5 mol% Pd-$TiO_2$, which was attributedto recombination between the excited electrons and holes. Based on these optical characteristics, the evolution of $H_2$ from methanol/water (1:1) photo-splitting over Pd-$TiO_2$ in the liquid system was enhanced, compared with that over pure $TiO_2$. In particular, 2.4 mL of $H_2$ gas was produced after 8 h when 0.5 g of a 1.0 mol% Pd-$TiO_2$ catalyst was used. $H_2$ was stably evolved even after 28 h without catalytic deactivation, and the amount of $H_2$ produced reached 14.5 mL after 28 h. This is in contrast to the case of the Pd 0.1 mol% impregnated $TiO_2$ of $H_2$ evolution of 17.5 mL due to the more decreasedelectron-hole recombination.

후막 센서 어레이를 이용한 화학 작용제 분류 (Classification of Chemical Warfare Agents Using Thick Film Gas Sensor Array)

  • 곽준혁;최낙진;반태현;임연태;김재창;허증수;이덕동
    • 한국군사과학기술학회지
    • /
    • 제7권2호
    • /
    • pp.81-87
    • /
    • 2004
  • Semiconductor thick film gas sensors based on tin oxide are fabricated and their gas response characteristics are examined for four simulant gases of chemical warfare agent (CWA)s. The sensing materials are prepared in three different sets. 1) The Pt or Pd $(1,\;2,\;3\;wt.\%)$ as catalyst is impregnated in the base material of $SnO_2$ by impregnation method.2) $Al_2O_3\;(0,\;4,\;12,\;20\;wt.\%),\;In_2O_3\;(1,\;2,\;3\;wt.\%),\;WO_3\;(1,\;2,\;3\;wt.\%),\;TiO_2\;(3,\;5,\;10\;wt.\%)$ or $SiO_2\;(3,\;5,\;10\;wt.\%)$ is added to $SnO_2$ by physical ball milling process. 3) ZnO $(1,\;2,\;3,\;4,\;5\;wt.\%)$ or $ZrO_2\;(1,\;3,\;5\;wt.\%)$ is added to $SnO_2$ by co-precipitation method. Surface morphology, particle size, and specific surface area of fabricated sensing films are performed by the SEM, XRD and BET respectively. Response characteristics are examined for simulant gases with temperature in the range 200 to $400^{\circ}C$, with different gas concentrations. These sensors have high sensitivities more than $50\%$ at 500ppb concentration for test gases and also have shown good repetition tests. Four sensing materials are selected with good sensitivity and stability and are fabricated as a sensor array A sensor array Identities among the four simulant gases through the principal component analysis (PCA). High sensitivity is acquired by using the semiconductor thick film gas sensors and four CWA gases are classified by using a sensor array through PCA.