DOI QR코드

DOI QR Code

Kinetics and Mechanism of Nucleophilic Displacement Reactions of Y-Substituted Phenyl Benzoates with Z-Substituted Phenoxides

  • Min, Se-Won (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Seo, Jin-A (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Um, Ik-Hwan (Department of Chemistry and Nano Science, Ewha Womans University)
  • Published : 2009.10.20

Abstract

Second-order rate constants have been measured for two series of nucleophilic displacement reactions, i.e., reactions of 4-nitrophenyl benzoate with Z-substituted phenoxides and those of Y-substituted phenyl benzoates (1a-h) with 4-chlorophenoxide (4-ClPhO–) in 80 mol% $H_2O$/20 mol% DMSO at 25.0 ${\pm}\;0.1\;{^{\circ}C}$. The Br$\phi$nsted-type plot for reactions of 4-nitrophenyl benzoate with Z-substituted phenoxides exhibits an excellent linear correlation with ${\beta}_{nuc}$ = 0.72. Reactions of 1a-h with 4-chlorophenoxide result in also a linear Br$\phi$nsted-type plot with ${\beta}_{lg}$ = –0.62, a typical ${\beta}_{lg}$ value for a concerted mechanism. The Hammett plots correlated with ${\sigma}^o\;and\;{\sigma}^-$ constants show many scattered points for reactions of 1a-h with 4-chlorophenoxide. In contrast, the corresponding Yukawa-Tsuno plot exhibits an excellent linear correlation with $\rho_Y$ = 2.26 and r = 0.53, indicating that expulsion of the leaving group occurs at the rate-determining step (RDS) either in a concerted mechanism or in a stepwise pathway. However, a stepwise mechanism with leaving group departure being the RDS is excluded since the leaving Y-substituted phenoxide is less basic and a better nucleofuge than the incoming 4-ClPh$O^-$. Thus, the reactions have been concluded to proceed through a concerted mechanism, in which bond formation between the nucleophile and electrophilic center is more advanced than expulsion of the leaving group in the transition state on the basis of the magnitude of ${\beta}_{nuc}\;and\;{\beta}_{lg}$ values.

Keywords

References

  1. Jencks, W. P. Catalysis in Chemistry and Enzymology; McGraw-Hill: New York, U. S. A., 1969; p 480-483.
  2. Jencks, W. P. Chem. Soc. Rev. 1981, 10, 345-375. https://doi.org/10.1039/cs9811000345
  3. Jencks, W. P.; Gilchrist, M. J. Am. Chem. Soc. 1968, 90, 2622-2637. https://doi.org/10.1021/ja01012a030
  4. Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6963-6970. https://doi.org/10.1021/ja00463a032
  5. Page, M.; Williams, A. Organic and Bio-organic Mechanisms; Longman: Harlow, U. K., 1997; Chapter 7.
  6. Williams, A. Adv. Phys. Org. Chem. 1992, 27, 1-55.
  7. Chrystiuk, E.; Williams, A. J. Am. Chem. Soc. 1987, 109, 3040-3046. https://doi.org/10.1021/ja00244a028
  8. Castro, E. A. Chem. Rev. 1999, 99, 3505-3524. https://doi.org/10.1021/cr990001d
  9. Castro, E. A.; Echevarria, G. R.; Opazo, A.; Robert, P. S.; Santos, J. G. J. Phys. Org. Chem. 2008, 21, 62-67. https://doi.org/10.1002/poc.1285
  10. Castro, E. A.; Aguayo, R.; Bessolo, J.; Santos, J. G. J. Phys. Org. Chem. 2006, 19, 555-561. https://doi.org/10.1002/poc.1055
  11. Castro, E. A.; Echevarria, G. R.; Opazo, A.; Robert, P. S.; Santos, J. G. J. Phys. Org. Chem. 2006, 19, 129-135. https://doi.org/10.1002/poc.1007
  12. Castro, E. A.; Aguayo, R.; Bessolo, J.; Santos, J. G. J. Org. Chem. 2005, 70, 7788-7791. https://doi.org/10.1021/jo051052f
  13. Castro, E. A.; Aguayo, R.; Bessolo, J.; Santos, J. G. J. Org. Chem. 2005, 70, 3530-3536. https://doi.org/10.1021/jo050119w
  14. Castro, E. A.; Vivanco, M.; Aguayo, R.; Santos, J. G. J. Org. Chem. 2004, 69, 5399-5404. https://doi.org/10.1021/jo049260f
  15. Castro, E. A.; Bessolo, J.; Aguayo, R.; Santos, J. G. J. Org. Chem. 2003, 68, 8157-8161. https://doi.org/10.1021/jo0348120
  16. Sung, D. D.; Koo, I. S.; Yang, K.; Lee, I. Chem. Phys. Lett. 2006, 432, 426-430. https://doi.org/10.1016/j.cplett.2006.11.002
  17. Sung, D. D.; Koo, I. S.; Yang, K.; Lee, I. Chem. Phys. Lett. 2006, 426, 280-284. https://doi.org/10.1016/j.cplett.2006.06.015
  18. Oh, H. K.; Oh, J. Y.; Sung, D. D.; Lee, I. J. Org. Chem. 2005, 70, 5624-5629. https://doi.org/10.1021/jo050606b
  19. Oh, H. K.; Park, J. E.; Sung, D. D.; Lee, I. J. Org. Chem. 2004, 69, 3150-3153. https://doi.org/10.1021/jo049845+
  20. Um, I. H.; Park, Y. M.; Fujio, M.; Mishima, M.; Tsuno, Y. J. Org. Chem. 2007, 72, 4816-4821. https://doi.org/10.1021/jo0705061
  21. Um, I. H.; Hwang, S. J.; Baek, M. H.; Park, E. J. J. Org. Chem. 2006, 71, 9191-9197. https://doi.org/10.1021/jo061682x
  22. Um, I. H.; Shin, Y. H.; Han, J. Y.; Mishima, M. J. Org. Chem. 2006, 71, 7715-7720. https://doi.org/10.1021/jo061308x
  23. Um, I. H.; Lee, J. Y.; Fujio, M.; Tsuno, Y. Org. Biomol. Chem. 2006, 4, 2979-2985. https://doi.org/10.1039/b607194e
  24. Um, I. H.; Lee, J. Y.; Ko, S. H.; Bae, S. K. J. Org. Chem. 2006, 71, 5800-5803. https://doi.org/10.1021/jo0606958
  25. Um, I. H.; Jeon, S. E.; Seok, J. A. Chem. Eur. J. 2006, 12, 1237-1243. https://doi.org/10.1002/chem.200500647
  26. Williams, A. Acc. Chem. Res. 1989, 22, 387-392. https://doi.org/10.1021/ar00167a003
  27. Ba-Saif, S.; Luthra, A. K.; Williams, A. J. Am. Chem. Soc. 1989, 111, 2647-2652. https://doi.org/10.1021/ja00189a045
  28. Ba-Saif, S.; Luthra, A. K.; Williams, A. J. Am. Chem. Soc. 1987, 109, 6362-6368. https://doi.org/10.1021/ja00255a021
  29. Buncel, E.; Um, I. H.; Hoz, S. J. Am. Chem. Soc. 1989, 111, 971-975. https://doi.org/10.1021/ja00185a029
  30. Um, I. H.; Hwang, S. J.; Buncel, E. J. Org. Chem. 2006, 71, 915-920. https://doi.org/10.1021/jo051823f
  31. Um, I. H.; Han, J. Y.; Hwang, S. J. Chem. Eur. J. 2008, 14, 7324-7330. https://doi.org/10.1002/chem.200800553
  32. Um, I. H.; Park, J. E.; Shin, Y. H. Org. Biomol. Chem. 2007, 5, 3539-3543. https://doi.org/10.1039/b712427a
  33. Jencks, W. P. Chem. Rev. 1985, 85, 511-527. https://doi.org/10.1021/cr00070a001
  34. Grunwald, E. J. Am. Chem. Soc. 1985, 107, 125-133. https://doi.org/10.1021/ja00287a023
  35. Grunwald, E. J. Am. Chem. Soc. 1985, 107, 4710-4715. https://doi.org/10.1021/ja00302a018
  36. Williams, A. Free Energy Relationships in Organic and Bio-Organic Chemistry; Royal Society of Chemistry: Cambridge, U. K., 2003; p 297.
  37. Leffler, J. E.; Grunwald, E. Extrathermodynamic Free Energy Relationships, Rates and Equilibria of Organic Reactions; Wiley: New York, U. S. A., 1963; Chapter 7.
  38. Jencks, W. P. Catalysis in Chemistry and Enzymology; McGraw-Hill: New York, U. S. A., 1969; p 193-199.
  39. Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic Chemistry University Science Books: Sausalito, California, U. S. A., 2006; p 410.
  40. Ul Hoque, M. E.; Dey, S.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Org. Chem. 2007, 72, 5493-5499. https://doi.org/10.1021/jo0700934
  41. Guha, A. K.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 12-15. https://doi.org/10.1021/jo990671j
  42. Guha, A. K.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1999, 765-770.
  43. Buncel, E.; Albright, K. G.; Onyido, I. Org. Biomol. Chem. 2004, 2, 601-610. https://doi.org/10.1039/b314886f
  44. Cook, R. D.; Rahhal-Arabi, L. Tetrahedron Lett. 1985, 26, 3147-3150.
  45. Cook, R. D.; Daouk, W. A.; Hajj, A. N.; Kabbani, A.; Kurku, A.; Samaha, M.; Shayban, F.; Tanielianm, O. V. Can. J. Chem. 1986, 64, 213-219. https://doi.org/10.1139/v86-037
  46. Haake, P.; McCoy, D. R.; Okamura, W.; Alpha, S. R.; Wong, S. Y.; Tyssee,D. A.; McNeal, J. P.; Cook, R. D. Tetrahedron Lett. 1968, 9, 5243-5246. https://doi.org/10.1016/S0040-4039(00)89832-9
  47. Wallerberg, G.; Haake, P. J. Org. Chem. 1981, 46, 43-46. https://doi.org/10.1021/jo00314a009
  48. Um, I. H.; Han, J. Y.; Shin, Y. H. J. Org. Chem. 2009, 74, 3073-3078. https://doi.org/10.1021/jo900219t
  49. Im, L. R.; Park, Y. M.; Um, I. H. Bull. Korean Chem. Soc. 2008, 29, 2477-2481. https://doi.org/10.5012/bkcs.2008.29.12.2477
  50. Carrol, F. A. Perspectives in Structures and Mechanism in Organic Chemistry; Brook/Cole: New York, 1998; p 371-380.
  51. Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 3rd Ed.; Harper Collins Publishers: New York, 1987; p 143-151
  52. Advances in Linear Free-Energy Relationships; Chapman, N. B., Ed.; Plenum: London, 1972.
  53. Techniques of Organic Chemistry, Vol. 6, 3rd Ed.; Lewis, E. S., Ed.; Wiley: New York, 1974; Part 1.
  54. Techniques of Organic Chemistry, Vol. 6, 4th Ed.; Bernasconi, C. F., Ed.; Wiley: New York, 1986.
  55. Onyido, I.; Swierczek, K.; Purcell, J.; Hengge, A. C. J. Am. Chem. Soc. 2005, 127, 7703-7711. https://doi.org/10.1021/ja0501565
  56. Bourne, N.; Chrystiuk, E.; Davis, A. M.; Williams, A. J. Am. Chem. Soc. 1988, 110, 1890-1895. https://doi.org/10.1021/ja00214a037
  57. Douglas, K. T.; Williams, A. J. Chem. Soc., Perkin Trans. 2 1976, 513-515.
  58. Younker, J. M.; Hengge, A. C. J. Org. Chem. 2004, 69, 9043-9048. https://doi.org/10.1021/jo0488309
  59. Oh, H. K.; Jin, Y. C.; Sung, D. D.; Lee, I. Org. Biomol. Chem. 2005, 3, 1240-1244. https://doi.org/10.1021/jo0488309
  60. Um, I. H.; Han, H. J.; Baek, M. H.; Bae, S. Y. J. Org. Chem. 2004, 69, 6365-6370. https://doi.org/10.1039/b500251f
  61. Um, I. H.; Kim, K. H.; Park, H. R.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3937-3942. https://doi.org/10.1021/jo0492160
  62. Um, I. H.; Min, J. S.; Lee, H. W. Can. J. Chem. 1999, 77, 659-666. https://doi.org/10.1021/jo049694a
  63. Um, I. H.; Han, H. J.; Ahn, J. A.; Kang, S.; Buncel, E. J. Org. Chem. 2002, 67, 8475-8480. https://doi.org/10.1139/cjc-77-5-6-659
  64. Tsuno, Y.; Fujio, M. Adv. Phy. Org. Chem. 1999, 32, 267-385. https://doi.org/10.1021/jo026339g
  65. Tsuno, Y.; Fujio, M. Chem. Soc. Rev. 1996, 25, 129-139. https://doi.org/10.1016/S0065-3160(08)60009-X
  66. Yukawa, Y.; Tsuno, Y. Bull. Chem. Soc. Jpn. 1959, 32, 965-970. https://doi.org/10.1039/cs9962500129

Cited by

  1. in 20 mol % DMSO (aq). Effects of 5-Thienyl Substituent and Base Strength vol.34, pp.7, 2013, https://doi.org/10.5012/bkcs.2013.34.7.2036
  2. Structure-Reactivity Correlations in Nucleophilic Displacement Reactions of Y-Substituted-Phenyl X-Substituted-Cinnamates with Z-Substituted-Phenoxides vol.34, pp.8, 2013, https://doi.org/10.5012/bkcs.2013.34.8.2455
  3. Origin of the α-Effect in Nucleophilic Substitution Reactions of Y-Substituted Phenyl Benzoates with Butane-2,3-dione Monoximate and Z-Substituted Phenoxides: Ground-State Destabilization vs. T vol.30, pp.12, 2009, https://doi.org/10.5012/bkcs.2009.30.12.2913