DOI QR코드

DOI QR Code

A Theoretical Study on the Reaction of Phosphadioxiranes and Thiadioxiranes;Disproportionation versus Epoxidation

  • Published : 2009.10.20

Abstract

The transition structures for the epoxidations of ethylene and the disproportionations by the dioxiranes of phosphines, phosphites and sulfides were studied with density function theory methods using the Becke3LYP functional and 6-311+G(2d,p) basis set. When the dioxiranes have methyl substituents rather than hydrogen substituents, the reaction barriers ($E_{TS}$) become higher in their epoxidations of ethylene by the steric hindrance, but become lower in their disproportionations of phosphines, phosphites and sulfides, which indicates that the nature of the dioxiranes seems to be electrophilic and in their disproportionations the reaction barriers are effected both by the electrophilicity and the steric hindrance. The steric factors in the disproportionations were calculated and more bulky substituents at dioxiranes may be necessary to retard the disproportionation and to enhance the epoxidation.

Keywords

References

  1. Sawwan, N.; Greer, A. Chem. Rev. 2007, 107, 3247. https://doi.org/10.1021/cr0400717
  2. Itzstein, M. V.; Jenkins, I. D. J. Chem. Soc., Chem. Commun. 1983, 4, 165.
  3. Clennan, E. L.; Pace, A. Tetrahedron 2005, 61, 6665. https://doi.org/10.1016/j.tet.2005.04.017
  4. Nahm, K.; Foote, C. S. J. Am. Chem. Soc. 1989, 111, 909.
  5. Buckler, S. A. J. Am. Chem. Soc. 1962, 84, 3093. https://doi.org/10.1021/ja00875a011
  6. Schenck, G. O.; Krauch, C. H. Angew. Chem. 1962, 74, 510.
  7. Gu, C.-L.; Foote, C. S.; Kacher, M. L. J. Am. Chem. Soc. 1981, 103, 5949. https://doi.org/10.1021/ja00409a073
  8. Nahm, K.; Li, Y.; Evanseck, J. D.; Houk, K. N.; Foote, C. S. J. Am. Chem. Soc. 1993, 115, 4879. https://doi.org/10.1021/ja00064a057
  9. Tsuji, S.; Kondo, M.; Ishiguro, K.; Sawaki, Y. J. Org. Chem. 1993, 58, 5055. https://doi.org/10.1021/jo00071a012
  10. Jensen, F.; Greer, A.; Clennan, E. L. J. Am. Chem. Soc. 1998, 120, 4339.
  11. Greer, A.; Chen, M.-F.; Jensen, F.; Clennan, E. L. J. Am. Chem. Soc. 1997, 119, 4380. https://doi.org/10.1021/ja964295l
  12. Jensen, F. J. Org. Chem. 1992, 57, 6478. https://doi.org/10.1021/jo00050a022
  13. Akasaka, T.; Ando, W. Phosphoru, Sulfur and Silicon 1994, 95-96, 437.
  14. Zhang, D.; Ye, B.; Ho, D. G.; Gao, R.; Selke, M. Tetrahedron 2006, 62, 10729. https://doi.org/10.1016/j.tet.2006.07.112
  15. Ho, D. G.; Gao, R.; Celaje, J.; Chung, H.-Y.; Selke, M. Science 2003, 302, 259. https://doi.org/10.1126/science.1089145
  16. Murray, R. W. Chem. Rev. 1989, 89, 1187. https://doi.org/10.1021/cr00095a013
  17. Adam, W.; Curci, R.; Edwards, J. O. Acc. Chem. Res 1989, 22, 205. https://doi.org/10.1021/ar00162a002
  18. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03W, Revision E.01, Gaussian, Inc., Wallingford CT, 2004.
  19. Bach, R. D.; Owensby, A. L.; Andrés, J. L.; Schlegel, H. B. J. Am. Chem. Soc. 1991, 113, 7031. https://doi.org/10.1021/ja00018a049
  20. Bach, R. D.; Andre´s, J. L.; Owensby, A. L.; Schlegel, H. B.; McDouall, J. J. W. J. Am. Chem. Soc. 1992, 114, 7207. https://doi.org/10.1021/ja00044a037
  21. Houk, K. N.; Liu, J.; DeMello, N. C.; Condroski, K. R. J. Am. Chem. Soc. 1997, 119, 10147. https://doi.org/10.1021/ja963847x
  22. Deubel, D. V. J. Org. Chem. 2001, 66, 3790. https://doi.org/10.1021/jo010127m

Cited by

  1. Self sensitized photooxidation of N-methyl phenothiazine: acidity control of the competition between electron and energy transfer mechanisms vol.11, pp.11, 2012, https://doi.org/10.1039/c2pp25244a
  2. P NMR Evidence for Peroxide Intermediates in Lipid Emulsion Photooxidations: Phosphine Substituent Effects in Trapping vol.93, pp.6, 2017, https://doi.org/10.1111/php.12810
  3. Oxidation of a phosphinidene oxide: formation of a dioxaphosphirane oxide with oxygen scrambling vol.55, pp.2, 2019, https://doi.org/10.1039/c8cc08945k