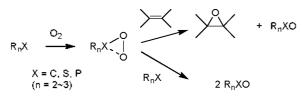
A Theoretical Study on the Reaction of Phosphadioxiranes and Thiadioxiranes; Disproportionation versus Epoxidation

Keepyung Nahm

Department of Chemistry, Yeungnam University, Kvongsan, Kvungbuk 712-749, Korea. E-mail: kpnahm@yu.ac.kr Received July 8, 2009, Accepted August 7, 2009

The transition structures for the epoxidations of ethylene and the disproportionations by the dioxiranes of phosphines, phosphites and sulfides were studied with density function theory methods using the Becke3LYP functional and 6-311+G(2d,p) basis set. When the dioxiranes have methyl substituents rather than hydrogen substituents, the reaction barriers (E_{TS}) become higher in their epoxidations of ethylene by the steric hindrance, but become lower in their disproportionations of phosphines, phosphites and sulfides, which indicates that the nature of the dioxiranes seems to be electrophilic and in their disproportionations the reaction barriers are effected both by the electrophilicity and the steric hindrance. The steric factors in the disproportionations were calculated and more bulky substituents at dioxiranes may be necessary to retard the disproportionation and to enhance the epoxidation.


Key Words: Phosphadioxiranes. Thiadioxiranes. Computation, Disproportionation. Epoxidation

Introduction

Dioxiranes of phosphines. phosphites and sulfides are reactive organic peroxides.¹ Structures of the dioxiranes XO₂ are either cyclic triangular forms or acyclic forms. Dioxiranes of phosphins and phosphites are cyclic forms² and those of sulfides are expected to be both cyclic and acyclic forms.³ They are easily formed from phosphines, phosphites and sulfides with singlet molecular oxygen, and are intermediates in reactions: during the generation process they further disproportionate *in situ* and share one oxygen with phosphines, phosphites and sulfoxides, respertively¹ (Scheme I). Some of them were isolated and characterized via the spectroscopic ways.^{1a.4c}

Another reaction pathway of dioxiranes is the epoxidation of olefins, which competes with the *in situ* disproportionation.⁴ Similar epoxidation by carbodioxiranes (C-O-O) are well studied and they are widely used in the synthetic chemistry,⁵ probably because the carbodioxiranes are rather stable and do not undergo the *in situ* disproportionation. However, the reactivity of dioxiranes of phosphorous and sulfur molecules in the disproportionation and the epoxidation is not clearly elucidated.

If the epoxidations by the dioxiranes are utilized, they would be useful organic oxidants in synthetic chemistry. Here we present a theoretical study on the *in situ* disproportionation and the epoxidation of olefins with the dioxiranes of phosphines, sulfides and phosphites. We will compare the reactivities of both reactions and discuss the possibility of the dioxiranes as the epoxidizing agents.

Computational Details

All calculations were performed with GAUSSIAN 03 package.⁶ Geometry optimizations were carried out by using density functional theory. the Becke3LYP functional and the 6-31G*, 6-311+G(2d,p) basis sets. The target molecules are H₃P and (CH₃)₃P, (HO)₃P, (CH₃O)₃P. H₂S. and (CH₃)₂S and their dioxiranes.

Calculations with MP2 method and the same basis sets were repeated for the disproportionation and the epoxidation of ethylene by dioxiranes of sulfides which give the acyclic peroxide intermediates rather than the cyclic dioxiranes at B3LYP.¹

The target transition states were located for the disproportionation between the dioxiranes and the corresponding phosphines or phosphites or sulfides and for epoxidation of ethylene with the dioxiranes. Frequency calculations have been carried out for all the transition structures to ensure the presence of only one imaginary frequency corresponding to the bond forming and bond breaking. By the analysis of certain bond lengths of the transition structures which compares with the products, the conversions were estimated; ethylene to ethylene oxide, phosphines to phosphine oxides, *etc.* The optimized reactants were also checked by frequency calculations to confirm that they are minima.

Results and Discussion

The RHF results are slightly different from those of B3LYP and MP2. but the differences depending on the basis sets are not significant. We will discuss the geometries and energetics at B3LYP/6-311+G(2d,p) (Table 1). The dioxiranes have previously been calculated and the present calculation also gave nearly the same results.¹ The dioxiranes of phosphorous and sulfur are calculated to have a cyclic H₃P-O-O (**PINHO**), (HO)₃P-O-O (**PITHO**) or H₂S-O-O (**SIDHO**1) structures (about 60 ~ 70 degree angles of X-O-O) similar to the cyclic H₂C-O-O of carbodioxiranes (**DHDO**), except sulfides have

2218 Bull. Korean Chem. Soc. 2009, Vol. 30, No. 10

Table 1. Geometric parameters of various dioxiranes and their transition states at B3LYP/6-311+G(2d,p). (lengths in Å, angles in degree).

Dioxiranes	TS	d(X-O)	d (O-O)	d(OX)	a(X-O-O)
H ₂ CO ₂		1.3896	1.5028	-	57.3
	DHDO_TS1	1.3247	1.8702	2.0427	50.6
Me ₂ CO ₂		1.4028	1.5025	-	57.6
	DMDO_TS1	1.3222	1.8835	-2.0038°	52.7
H_3PO_2		1.5996	1.5629	-	65.2
	PINH_TS1	1.5499	1.8260	2.1389*	65.0
	PINH_TS2	1.5712	1.7334	2.2709	64.2
Me ₃ PO ₂		1.6081	1.5443	-	67.7
	PINM_TS1	1.5395	1.7686	2.1381°	80.4
	PINM_TS2	1.5823	1.6859	2.3933	67.2
(HO) ₃ PO ₂		1.5856	1.5541	-	66.0
	PITH_TS1	1.5268	1.8147	2.1610°	72.6
	PITH_TS2	1.5611	1.6895	2.2378	69.4
(MeO) ₃ PO ₂		1.5924	1.5496	-	65.7
	PITM_TS1	1.5382	1.8004	2.1479°	66.1
	PITM_TS2	1.5565	1.7076	2.2964	67.7
H_2SO_2	(dioxirane)	1.5824	1.5383	-	77.6
	SIDH1_TS1	1.5615	1.7172	2.28512	78.2
	SIDH1_TS2	1.5605	1.7404	2.3309	77.1
Me ₂ SO ₂	(dioxirane)	1.5798	1.5295	-	84.2
	SIDM1_TS1	1.5568	1.7022	2.2835°	87.7
	SIDM1_TS2	1.5669	1.6602	2.5138	82.6
H ₂ SO ₂	(peroxy)	1.5645	1.4655	-	101.9
	SIDH2_TS1	1.5405	1.6404	2.1647°	99.8
	SIDH2_TS2	1.5362	1.6740	2.2035	99.0
Me ₂ SO ₂	(peroxy)	1.6084	1.4465	-	109.4
	SIDM2_TS1	1.5552	1.6407	2.1274	106.8
	SIDM2_TS2	1.5567	1.6360	2.2482	105.6

^aaveraged values of two d(O--X).

one additional intermediate, persulfoxides, of the angle of \sim 110 degree (SIDHO2).

Geometries

Carbodioxiranes. The carbodioxiranes have C_{2v} symmetry and both oxygen atoms are equivalent. The C-O bond of and dihydrogendioxirane (**DHDO**) and dimethyldioxirane (**DMDO**) is 1.3896 Å and 1.4028 Å.⁷ The transition state (**DHDO_TS1**) for the epoxidation of ethylene with **DHDO** has a d(C-O) of Keepyung Nahm

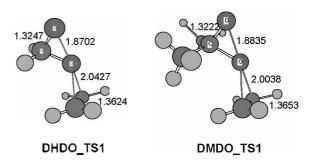
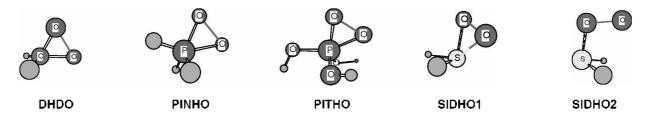
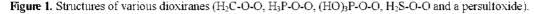


Figure 2. Transition states of the epoxidation of **DHDO** and **DMDO** with ethylene (length in Å).


1.3247 Å, an d(O-O) of 1.8702 Å. an d(O-C_{ethylene}) of 2.0466 Å and 2.0389 Å (i.e., slightly distorted) and a d(C=C) of 1.3624 Å.


Analyzing the C=C bond of ethylene which changes to a single bond from ethylene to TS to an epoxide, the conversion of the epoxidation can be estimated: these d(C-C) are 1.3255 Å. 1.3624 Å, and 1.4646 Å, respectively, and the conversion is 27%. And the d(C-O) of **DHDO** which becomes to a double bond of formaldehyde changes from 1.3896 Å to 1.3247 Å of TS to 1.2005 Å, the conversion to formaldehyde is estimated to be 34%.

The TS (**DMDO_TS1**) of the epoxidation by **DMDO** and the approaching ethylene have a C-O of 1.3222 Å. an O-O of 1.8835 Å. an O-C_{ethylene} of 2.0038 Å. and a C=C of 1.3653 Å. Comparing the C-C bond of ethylene to those of TS and the epoxide, the bonds change from 1.3255 Å to 1.3653 Å to 1.4646 Å, respectively, which indicate about 30% conversion to the epoxide. Considering the change in the C-O bonds from **DMDO** to TS to acetone which has the bond of 1.2109 Å, the TS is about 40% conversion.

Phosphadioxiranes. Phosphadioxiranes have the Cs symmetry with a symmetry plane containing the P-O-O triangle. H_3PO_2 (**PINHO**) has two different d(P-O) of 1.5991 Å and 1.7041 Å and d(O-O) of 1.5629 Å, and (CH₃)₃PO₂ (**PINMO**) has d(P-O) of 1.6081 Å and 1.7573 Å and d(O-O) of 1.5443 Å, respectively.²

The epoxidation of ethylene with both phosphadioxiranes occurs as the ethylene approaches toward the loose oxygen in a slightly distorted mode. The d(O-C_{ethylene}) of both TS (**PINH_TS1** and **PINM_TS1**) are similar (2.1389 Å and 2.1381 Å) but the angles (P-O-O) are 65 and 85 degree and the d(P-O_{epoxide}) are 1.8278 Å and 2.1432 Å. respectively, which indicates that **PINM_TS1** is a more product-like TS than **PINH_TS1**. and the steric hindrance by the methyl groups is prominent in the epoxidation. The C-C bonds of ethylene in the TS (**PINH_TS1**,

1 8260 1.5629 1.599 1 5499 7041 1.3505 PINH TS1 PINHO .7334 1.571 1.5443 1.608 2 2709 573 PINH_TS2 PINMO 1.6859 582 7686 3933 3454 PINM TS1 PINM TS2

Figure 3. Phosphadioxiranes and their transition states for the epoxidations and the disproportionations (lengths in Å).

PINM_TS1) with H₃PO₂ and (CH₃)₃PO₂ are 1.3505 Å and 1.3454 Å, i.e., 18% and 15% conversion to the epoxide. The d(P-O) of H₃PO and (CH₃)₃PO are 1.4839 Å and 1.4896 Å and the corresponding lengths of TS are 1.5499 Å and 1.5395 Å; 43 % and 58% conversion.

The disproportion reaction of a phosphadioxirane with a phosphine occurs in a similar way to the epoxidation, but the TS is more product-like: the lengths d(O-O) and d(O-P) of **PINH_TS2** are 1.7334 Å and 2.2709 Å and the lengths d(O-O) and d(O-P) of TS **PINM_TS2** are 1.6859 Å and 2.3933 Å. respectively.² The lengths d(P-O) of dioxiranes of two TS are 1.5712 Å and 1.5823 Å; 25% and 22% conversion.

Tribydroxyphosphadioxirane and trimetboxyphosphadioxi-

Bull. Korean Chem. Soc. 2009. Vol. 30, No. 10 2219

rane. Geometries of peroxyphosphites and TS of epoxidation and disproportionation are similar to those of phosphine adducts. A difference is that the dioxiranes of phosphites do not have a plane symmetry because of alkoxy substituents. Two substituents of the phosphites near to the reaction side are rather symmetric, but not the third substituents.

The TS (**PITH_TS1**, **PITM_TS1**) for the epoxidation of (HO)₃ PO₂ and (CH₃O)₃PO₂ have d(O-C_{ethylene}) of 2.1610 Å and 2.1479 Å and the d(C-C) of ethylene of 1.3490 Å and 1.3495 Å, respectively.⁴ Conversions to the epoxides are estimated to be 17 % for both TS. The d(P-O) of (HO)₃PO and (CH₃O)₃PO are 1.4670 Å and 1.4705 Å and those of **PITH_TS1** and **PITM_TS1** are 1.5268 Å and 1.5382 Å, and those of dioxiranes (**PITHO**, **PITMO**) are 1.5996 Å and 1.6081 Å, hence the conversions to the phosphates are 45% and 49%, respectively, from the comparison of those d(P-O).

And the trihydroxyphosphadioxirane (**PITHO**) and a trihydroxyphosphite are expected to form a complex with two hydrogen-bonds, which proceeds to the corresponding TS for the disproportionation. The lengths d(O-P) of TS (**PITH_TS2**, **PITM_TS2**) of (HO)₃PO₂-P(OH)₃ and (CH₃O)₃PO₂-P(OCH₃)₃ are 2.2378 Å and 2.2964 Å, respectively. The lengths d(P-O) of dioxiranes of the TS are 1.5611 Å and 1.5565 Å: 29% and 38% conversion to the phosphates.

Thiadioxiranes and persulfoxide. Dioxygen adducts of sulfides are known to be calculated as either a cyclic thiadioxiranes or an acyclic persulfoxides depending on the calculation methods.^{1,3} We studied the epoxidation and disproportionation of both adducts with B3LYP/6-311+G(2d,p) and MP2/6-311+G(2d,p).

Cyclic thiadioxiranes (**SIDHO1**. **SIDMO1**) of hydrogen sulfide and methylsulfide have the triangles of S-O-O of the short d(S-O) of 1.5824 Å and 1.5798 Å and the long d(S-O) of 1.9566 Å and 2.0845 Å at B3LYP/6-311+G(2d,p). The further apart oxygen from the sulfur of both dioxysulfides participates in the epoxidation and disproportionation. The TS (**SIDH1_TS1**. **SIDM1_TS1**) for the epoxidation of the thiadioxiranes, H₂SO₂ and (CH₃)₂SO₂, have $d(O-C_{ethylene})$ of 2.2851 Å and 2.2835 Å and the d(C-C) of ethylene of 1.3392 Å and 1.3384 Å, respec-

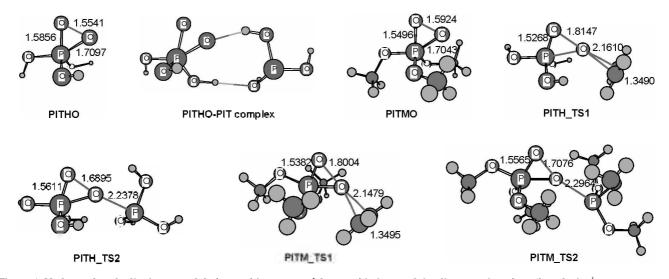


Figure 4. Hydroxyphosphadioxiranes and their transition states of the epoxidations and the disproportionations (lengths in Å).

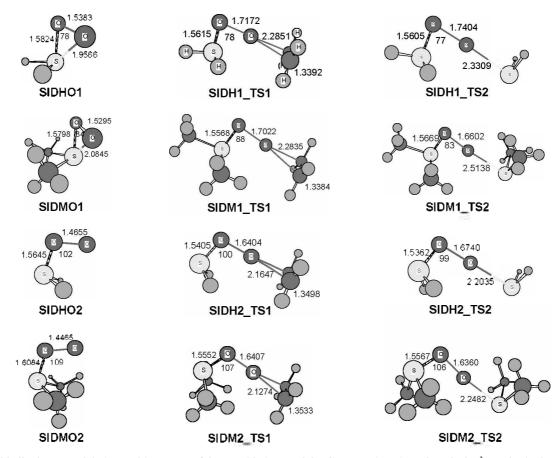


Figure 5. Thiadioxiranes and their transition states of the epoxidations and the disproportionations (lengths in Å, angles in degree).

tively. The conversions to the epoxides are estimated to be 10% for both TS. The d(S-O) of H₂SO and $(CH_3)_2SO$ are 1.4978 Å and 1.5013 Å and those of TS are 1.5615 Å and 1.5568 Å, and those of dioxiranes are 1.5824 Å and 1.5798 Å at B3LYP/ 6-311+G(2d,p), hence the conversions to the sulfoxides are 25% and 29%, respectively. The TS (SIDH1_TS2. SIDM1_TS2) for the disproportionation of thiadioxiranes with sulfides. H₂SO₂-SH₂ and (CH₃)₂SO₂-S(CH₃)₂, have the intermolecular d(O-S) of 2.3309 Å and 2.5138 Å, and the d(S-O) of dioxiranes are 1.5605 Å and 1.5669 Å, which are equivalent to 26% and 16% conversion to the sulfoxides.

At MP2/6-311+G(2d,p), dioxiranes of sulfides have acyclic peroxide S-O-O structures. Persulfoxides (SIDHO2, SIDMO2), H_2SO_2 and $(CH_3)_2SO_2$, have the short d(S-O) f 1.5645 Å and 1.6084 Å and the long d(S-O) of 2.3541 Å and 2.4950 Å, and the angle <S-O-O are 101.9 and 109.4 degree, respectively.³ The TS (SIDH2_TS1, SIDM2_TS1) for the epoxidation of the persulfoxides, H_2SO_2 and $(CH_3)_2SO_2$, have $d(O-C_{ethylene})$ of 2.1647 Å and 2.1274 Å and the d(C-C) of ethylene of 1.3498 A and 1.3533 A, respectively. Since the d(C-C) of ethylene and its epoxide at MP2/6-311+G(2d.p) are 1.3340 Å and 1.4650 A, The conversions to the epoxides are estimated to be 12% and 15% for both TS. The TS (SIDH2_TS2, SIDM2_TS2) for the disproportionation have the d(S-O) of 1.5362 Å and 1.5567 Å, and those of H₂SO and (CH₃)₂SO are 1.4995 Å and 1.5025 A, and those of dioxiranes (SIDHO2, SIDMO2) are 1.5645 A and 1.6084 A, hence the conversions to the sulfoxides are

44% and 49%, respectively.

Energetics

Comparing the E_{TS} at B3LYP and MP2 levels, those at RHF are overestimated. (Table 2) However, the energy trends at the comparison of the TS of their reactions are same and all energetics discussed here are from B3LYP/6-311+G(2d,p).

The activation energies (E_{TS}) for the epoxidation of ethylene with **DHDO_TS1** and **DMDO_TS1** are 12.96 and 18.11 kcal/ mol.⁷ The energy increment by 5.2 kcal/mol is expected to be caused by the steric hindrance with methyl groups of **DMDO**.

The E_{TS} for the epoxidation with H_3PO_2 (**PINH_TS1**) and (CH₃)₃PO₂ (**PINM_TS1**) are 8.6 and 12.8 kcal/mol, and those E_{TS} with (HO)₃PO₂ (**PITH_TS1**) and (CH₃O)₃PO₂ (**PITM_TS1**) are 10.8 and 15.5 kcal/mol, respectively. The increments of E_{TS} by the methyl steric hindrance are 4.2 and 4.7 kcal/mol, which is similar to those of carbodioxiranes.

However, the energetics for the epoxidation by thiadioxiranes and peroxysulfoxides are different from those by the phosphadioxiranes. The E_{TS} for the epoxidation are lower in general, and those with **SIDH1_TS1** and **SIDH2_TS1** are 4.1 and 5.6 kcal/mol, and those E_{TS} with **SIDM1_TS1** and **SIDM2_TS1** are 4.8 and 6.2 kcal/mol, respectively, probably because of the widen angle of <S-O-O (80 - 90 or 100 - 105 degree) than those angles <P-O-O of TS of phosphadioxiranes. The increments of E_{TS} are 0.7 and 0.6 kcal/mol with methyl substituents. The

Providetion of Dimensionation	RHF	B3L YP		
Epoxidation or Disproportionation	6-31G*	6-31G*	6-311+G(2d,p)	
$H_2CO_2 + C_2H_4 \rightarrow \textbf{DHDO_TS1}$	40.92	12.94	12.96	
$Me_2CO_2 + C_2H_4 \rightarrow DMDO_TS1$	38.68	17.87	18.11	
$H_3PO_2 + C_2H_4 \rightarrow PINH_TS1$	19.73	7.42	8.55	
$PMe_{3}O_{2} + C_{2}H_{4} \rightarrow PINM_{TS1}$	13.86	12.67	12.79	
$H_3PO_2 + PH_3 \rightarrow PINH_TS2$	17.91	2.82	2.52	
$PMe_3O_2 + PMe_3 \rightarrow PINM_TS2$	9.11	0.31	1.00	
$(HO)_{3}PO_{2} + C_{2}H_{4} \rightarrow PITH_TS1$	15.07	9.50	10.79	
$P(OMe)_3O_2 + C_2H_4 \rightarrow PITM_TS1$	16.83	14.64	15.54	
$(HO)_{3}PO_{2}$ -P $(OH)_{3}$ -dimer \rightarrow PITH_TS2	16.50	6.95	5.34	
$P(OMe)_3O_2 + P(OMe)_3 \rightarrow PITM_TS2$	7.27	-0.33	2.69	
$H_2SO_2^a + C_2H_4 \rightarrow SIDH1_TS1$	8.29	4.07	4.13	
$SMe_2O_2^{a} + C_2H_4 \rightarrow SIDM1_TS1$	9.53	4.77	4.81	
$H_2SO_2^a + SH_2 \rightarrow SIDH1_TS2$	9.10	6.50	3.59	
$SMe_2O_2^{a} + SMe_2 \rightarrow SIDM1_TS2$	6.51	0.52	0.35	
$H_2SO_2^{b} + C_2H_4 \rightarrow SIDH2_TS1$	8.90	6.31	5.64	
$SMe_2O_2^{b} + C_2H_4 \rightarrow SIDM2_TS1$	11.22	7.68	6.17	
$H_2SO_2^{b} + SH_2 \rightarrow SIDH2_TS2$	9.85	10.34	7.75	
$SMe_2O_2^{b} + SMe_2 \rightarrow SIDM2_TS2$	7.80	5.02	2.64	

Table 2. Heats of reactions of the epoxidations and the disproportionations of various dioxiranes (in kcal/mol).

^acyclic thiadioxiranes. ^bperoxysulfoxides at MP2.

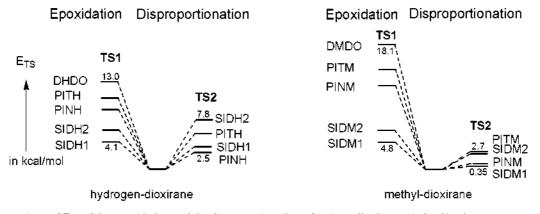


Figure 6. Comparison of E_{TS} of the epoxidation and the disproportionation of various dioxiranes (in kcal/mol).

steric hindrance in the epoxidation with the thiadioxirane and peroxydimethylsulfoxide seems to be a minor factor.

In the disproportionation, it is noticed that the methyl substituents do not increase but lower the TS barrier (E_{TS}) comparing to the hydrogen-substituents. The E_{TS} is decreased in (CH₃)₃PO₂ by 1.5 kcal/mol than in H₃PO₂ (**PINH_TS2** *vs.* **PINM_TS2**), and with (HO)₃PO₂ and (CH₃O)₃PO₂ by 2.7 kcal/mol (**PITH_TS2** versus **PITM_TS2**), and with cyclic H₂SO₂ and (CH₃)₂SO₂ by 3.2 kcal/mol (**SIDH1_TS2** versus **SIDM1_TS2**), and with peroxy H₂SO₂ and (CH₃)₂SO₂ by 5.1 kcal/mol (**SIDH2 TS2** versus **SIDM2 TS2**), respectively.

To study further the steric hindrance and the electronic effect. we assume the mixed disproportionations with phosphine dioxiranes (H₃PO₂, (CH₃)₃PO₂) and phosphines (PH₃, P(CH₃)₃). (Table 3) When H₃PO₂ disproportionates with P(CH₃)₃, the E_{TS} is calculated to be =1.52 kcal/mol, which is lower by 4.0 kcal/mol than that with PH₃ (2.52 kcal/mol). And when (CH₃)₃ PO₂ disproportionates with P(CH₃)₃, the E_{TS} is calculated to be 1.00 kcal/mol, which is also lower by 3.7 kcal/mol than that with PH₃ (4.66 kcal/mol). Considering that methyl group is more electron-donating than hydrogen, the lower E_{TS} by methyl substituents indicates the nature of the phosphadioxiranes is electrophilic.⁸

When E_{TS} of H_3PO_2 -PH₃ is compared with E_{TS} of $(CH_3)_3$ PO₂-PH₃, the ΔE_{TS} is 2.14 kcal/mol, and when E_{TS} of H_3PO_2 -P(CH₃)₃ is compared with E_{TS} of Me₃PO₂-P(CH₃)₃, the ΔE_{TS} is 2.52 kcal/mol. Those ΔE_{TS} increases are caused by the steric hindrance of methyl groups. The steric effect in E_{TS} for the disproportionation will intensified with bulkier substituents.

Epoxidation versus disproportionation. The disproportionation has a lower TS barrier (E_{TS}) than the epoxidation in general (Figure 6). The ΔE_{TS} between the epoxidation and

2222 Bull. Korean Chem. Soc. 2009, Vol. 30, No. 10

Table 3. Mixed disproportionations of H_3PO_2 and $(CH_3)_3PO_2$ with PH₃ and P(CH₃)₃ (in kcal/mol).

Heat of Reaction	B3LYP		
Heat of Reaction	6-31G*	6-311+G(2d,p)	
$H_3PO_2 + PH_3 \rightarrow H_3PO_2 - PH_3 TS$	2.82	2.52	
$Me_3PO_2 + PMe_3 \rightarrow Me_3PO_2 - PMe_3_TS$	0.31	1.00	
$H_3PO_2 + PMe_3 \rightarrow H_3PO_2 - PMe_3_TS$	-2.35	-1.52	
$Me_3PO_2 + PH_3 \rightarrow Me_3PO_2 - PH_3 TS$	5.22	4.66	

disproportionation is 6.1 kcal/mol with H_3PO_2 (PINH_TS1 vs. PINH_TS2) and 11.8 kcal/mol with (CH₃)₃PO₂ (PINM_TS1 vs. PINM_TS2). And the ΔE_{TS} with (HO)₃PO₂ (PITH_TS1 vs. PITH_TS2) is 5.5 kcal/mol and that with (CH₃O)₃PO₂ (PITM_TS1 vs. PITM_TS2) is 12.8 kcal/mol. The TS energy gaps are not high in thiadioxiranes; the ΔE_{TS} with H_2SO_2 are 0.5 (SIDH1_TS1 vs. SIDH1_TS2) and -2.1 kcal/mol (SIDH2_TS1 vs. SIDH2_TS2), those with (CH₃)₂SO₂, are 4.5 kcal/mol (SIDM1_TS1 vs. SIDM1_TS2) and 3.5 kcal/mol (SIDM2_TS1 vs. SIDM2_TS2), respectively. The disproportionation of the dioxiranes is expected to be the main reaction.

In conclusion, the geometry analysis shows the epoxidation and disproportionation of dioxiranes of phosphorous and sulfide have slightly early TS (reactant-like) than the carbodioxiranes. The nature of the dioxiranes is expected to be electrophilic. And from the mixed disproportionation of phosphadioxiranes, the increment of E_{TS} by steric hindrance of methyl groups is estimated to be about 2.1 - 2.5 kcal/mol. The steric hindrance of methyl substituent increases the E_{TS} of both the epoxidation and the disproportionation. However, in disproportionation with more bulky alkyl or aryl substituents, both dioxiranes and their precursors will have steric factors and the steric hindrance will be doubly intensified. Therefore when both reactions occurs in situ, introduction of the bulky substituents in the dioxiranes may retard the disproportionation and favor the epoxidation. Experimentally dioxiranes of triphenylphosphins are known to undergo the epoxidation rather than the disproportionation.^{4(b)(c)} The increased steric hindrance will slow down the disproportionation process and induce the epoxidation to yield epoxide products. We are continuing the studies on the more bulky system.

Acknowledgments. This research was supported by the Yeungnam University research grants in 2007.

Keepyung Nahm

References

- (a) Sawwan, N.; Greer, A. Chem. Rev. 2007, 107, 3247. (b) Itzstein, M. V.; Jenkins, I. D. J. Chem. Soc., Chem. Commun. 1983, 4, 165. (c) Cleman, E. L.; Pace, A. Tetrahedron 2005, 61, 6665. (d) Nahm, K.; Foote, C. S. J. Am. Chem. Soc. 1989, 111, 909. (e) Buckler, S. A. J. Am. Chem. Soc. 1962, 84, 3093. (f) Schenck, G. O.; Krauch, C. H. Angew. Chem. 1962, 74, 510. (g) Gu, C.-L.; Foote, C. S.; Kacher, M. L. J. Am. Chem. Soc. 1981, 103, 5949.
- (a) Nahm, K.; Li, Y.; Evanseck, J. D.; Houk, K. N.; Foote, C. S. J. Am. Chem. Soc. 1993, 115, 4879. (b) Tsuji, S.; Kondo, M.; Ishiguro, K.; Sawaki, Y. J. Org. Chem. 1993, 58, 5055.
- (a) Jensen, F.; Greer, A.; Clennan, E. L. J. Am. Chem. Soc. 1998, 120, 4339. (b) Greer, A.; Chen, M.-F.; Jensen, F.; Clennan, E. L. J. Am. Chem. Soc. 1997, 119, 4380. (c) Jensen, F. J. Org. Chem. 1992, 57, 6478.
- (a) Akasaka, T.; Ando, W. *Phosphoru, Sulfur and Silicon* 1994, 95-96, 437. (b) Zhang, D.; Ye, B.; Ho, D. G.; Gao, R.; Selke, M. *Tetrahedron* 2006, 62, 10729. (c) Ho, D. G.; Gao, R.; Celaje, J.; Chung, H.-Y.; Selke, M. *Science* 2003, 302, 259.
- For reviews, see: (a) Murray, R. W. Chem. Rev. 1989, 89, 1187.
 (b) Adam, W.: Curci, R.: Edwards, J. O. Acc. Chem. Res 1989, 22, 205.
- 6. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.: Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.: Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.: Raghavachari, K.: Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.: Pople, J. A. Gaussian 03W, Revision E.01, Gaussian, Inc., Wallingford CT, 2004.
- (a) Bach, R. D.; Owensby, A. L.; Andrés, J. L.; Schlegel, H. B. J. Am. Chem. Soc. 1991, 113, 7031. (b) Bach, R. D.; Andre's, J. L.; Owensby, A. L.; Schlegel, H. B.; McDouall, J. J. W. J. Am. Chem. Soc. 1992, 114, 7207. (c) Houk, K. N.; Liu, J.; DeMello, N. C.; Condroski, K. R. J. Am. Chem. Soc. 1997, 119, 10147.
- 8. Deubel, D. V. J. Org. Chem. 2001, 66, 3790.