DOI QR코드

DOI QR Code

Solution-Processable Field-Effect Transistors Fabricated Using Aryl Phenoxazine Based Polymers as the Active Layer

  • Yoon, Hye-Seon (Department of Chemistry, The Catholic University of Korea) ;
  • Lee, Woo-Hyung (Department of Chemistry, The Catholic University of Korea) ;
  • Lee, Ji-Hoon (Department of Polymer Science and Engineering, Chungju National University) ;
  • Lim, Dong-Gun (Department of Electronic Engineering, Chungju National University) ;
  • Hwang, Do-Hoon (Department of Applied Chemistry, Kumoh National Institute of Technology) ;
  • Kang, In-Nam (Department of Chemistry, The Catholic University of Korea)
  • Published : 2009.10.20

Abstract

Three phenoxazine-based conjugated polymers, namely, the aryl substituted phenoxazine homopolymer (P1) as well as the dimeric phenoxazine-fluorene (P2) and phenoxazine-bithiophene (P3) copolymers, were synthesized via the Ni(0) mediated Yamamoto reaction and the palladium-catalyzed Suzuki coupling reaction. The weight-averaged molecular weights ($M_w$) of P1, P2, and P3 were found to be 27,000, 22,000, and 15,000, respectively, and their polydispersity indices were 3.6, 1.8, and 2.1. All the polymers were soluble in common organic solvents such as chloroform, toluene, and so on. The UV-visible absorption maxima for P1, P2, and P3 in the film state were located at 421, 415 and 426 nm, respectively, and the ionization potentials of the polymers ranged between 4.90 and 5.12 eV. All the studied phenoxazine-based polymers exhibited amorphous behavior, as confirmed by X-ray diffraction (XRD) and atomic force microscopy (AFM) studies. Thin film transistors were fabricated using the top-contact geometry. P1 showed much better thin-film-transistor performance than P2 or P3: A thin film of P1 gave a saturation mobility of 0.81 ${\times}\;10^{-3}\;cm^2V^{-1}s^{-1}$ and an on/off ratio of about $10^2$.

Keywords

References

  1. Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C. Adv. Funct. Mater. 2001, 11, 15-26 https://doi.org/10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A
  2. Katz, H. E.; Bao, Z.; Gilat, S. L. Acc. Chem. Res. 2001, 34, 359. https://doi.org/10.1021/ar990114j
  3. Horowitz, G. Adv. Mater. 1998, 10, 365. https://doi.org/10.1002/(SICI)1521-4095(199803)10:5<365::AID-ADMA365>3.0.CO;2-U
  4. Rogers, J. A.; Bao Z. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 3327. https://doi.org/10.1002/pola.10405
  5. Babel, A.; Jenekhe, S. A. Macromolecules 2003, 36, 7759. https://doi.org/10.1021/ma034717t
  6. Son, J.-H.; Kang, I.-N.; Oh, S.-Y.; Park, J.-W. Bull. Korean Chem. Soc. 2007, 28, 995. https://doi.org/10.5012/bkcs.2007.28.6.995
  7. Dang, T. T. M.; Park, S. J.; Park, J. W.; Chung, D. S.; Park, C. E.; Kim, Y. H.; Kwon, S. K. J. Polym. Sci. Part A: Polym. Chem. 2007, 45(22), 5277. https://doi.org/10.1002/pola.22272
  8. Ohshita, J.; Kimura, K. Lee, K. H.; Kunai, A.; Kwak, Y. W.; Son, E. C.; Kunugi, Y. J. Polym. Sci. Part A: Polym. Chem. 2007, 45(20), 4588. https://doi.org/10.1002/pola.22196
  9. Cheng, K. F.; Chueh, C. C.; Liu, C. L.; Chen, W. C. J. Polym. Sci. Part A: Polym. Chem. 2008, 46(18), 6305. https://doi.org/10.1002/pola.22942
  10. Li, Y.; Kim, T. H.; Zhao, Q.; Kim, E. K.; Han, S. H.; Kim, Y. H.; Jang, J.; Kwon, S. K. J. Polym. Sci. Part A: Polym. Chem. 2008, 46(15), 5515.
  11. Zaumseil, J.; Sirringhaus, H. Chem. Rev. 2007, 107, 1296. https://doi.org/10.1021/cr0501543
  12. Kong, H.; Chung, D. S.; Kang, I. N.; Lim, E.; Jung, Y. K.; Park, J. H.; Park, C. E.; Shim, H. K. Bull. Korean Chem. Soc. 2007, 28, 1945. https://doi.org/10.5012/bkcs.2007.28.11.1945
  13. Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Janssen, R. A. J.; Meijer, E. W.; Herwig, P.; de Leeuw, D. M. Nature 1999, 401, 685. https://doi.org/10.1038/44359
  14. Chang, J. F.; Sun, B. Q.; Breiby, D. W.; Nielsen, M. M.; Solling, T. I.; Giles, M.; McCulloch, I.; Sirringhaus, H. Chem. Mater. 2004, 16, 4772. https://doi.org/10.1021/cm049617w
  15. Becerril, H. A.; Miyaki, N.; Tang, M. L.; Mondal, R.; Sun, Y. S.; Mayer, A. C.; Parmer, J. E.; McGehee, M. D.; Bao, Z. J. Mater. Chem. 2009, 19, 591. https://doi.org/10.1039/b819210c
  16. Bao, Z.; Lovinger, A. J. Chem. Mater. 1999, 11, 2607. https://doi.org/10.1021/cm990290m
  17. Zhu, Y.; Babel, A.; Jenekhe, S. A. Macromolecules 2005, 38, 7983. https://doi.org/10.1021/ma0510993
  18. Lim, E.; Kim, Y. H.; Lee, J. I.; Jung, B. J.; Cho, N. S.; Lee, J. J.; Do, L. M.; Shim, H. K. J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 4709. https://doi.org/10.1002/pola.21586
  19. Zagorska, M.; Krische, B. Polymer 1990, 31, 1379. https://doi.org/10.1016/0032-3861(90)90234-P
  20. Dimitrakoupoulos, C. D.; Melenfant, R. M. Adv. Mater. 2002, 14, 99. https://doi.org/10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9

Cited by

  1. Organocatalyzed Atom Transfer Radical Polymerization: Perspectives on Catalyst Design and Performance vol.38, pp.13, 2017, https://doi.org/10.1002/marc.201700040
  2. Synthesis and Characterization of Quinoxaline-Based Thiophene Copolymers as Photoactive Layers in Organic Photovoltaic Cells vol.32, pp.2, 2011, https://doi.org/10.5012/bkcs.2011.32.2.417
  3. Highly Efficient New Hole Injection Materials for OLEDs Based on Dimeric Phenothiazine and Phenoxazine Derivatives vol.115, pp.11, 2009, https://doi.org/10.1021/jp108719w
  4. Synthesis and Properties of 1,3-Indandione-Disubstituted Derivatives of Carbazole, Phenothiazine, and Phenoxazine vol.590, pp.1, 2009, https://doi.org/10.1080/15421406.2013.873851