• Title/Summary/Keyword: Phenoxazine

Search Result 4, Processing Time 0.019 seconds

Solution-Processable Field-Effect Transistors Fabricated Using Aryl Phenoxazine Based Polymers as the Active Layer

  • Yoon, Hye-Seon;Lee, Woo-Hyung;Lee, Ji-Hoon;Lim, Dong-Gun;Hwang, Do-Hoon;Kang, In-Nam
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2371-2376
    • /
    • 2009
  • Three phenoxazine-based conjugated polymers, namely, the aryl substituted phenoxazine homopolymer (P1) as well as the dimeric phenoxazine-fluorene (P2) and phenoxazine-bithiophene (P3) copolymers, were synthesized via the Ni(0) mediated Yamamoto reaction and the palladium-catalyzed Suzuki coupling reaction. The weight-averaged molecular weights ($M_w$) of P1, P2, and P3 were found to be 27,000, 22,000, and 15,000, respectively, and their polydispersity indices were 3.6, 1.8, and 2.1. All the polymers were soluble in common organic solvents such as chloroform, toluene, and so on. The UV-visible absorption maxima for P1, P2, and P3 in the film state were located at 421, 415 and 426 nm, respectively, and the ionization potentials of the polymers ranged between 4.90 and 5.12 eV. All the studied phenoxazine-based polymers exhibited amorphous behavior, as confirmed by X-ray diffraction (XRD) and atomic force microscopy (AFM) studies. Thin film transistors were fabricated using the top-contact geometry. P1 showed much better thin-film-transistor performance than P2 or P3: A thin film of P1 gave a saturation mobility of 0.81 ${\times}\;10^{-3}\;cm^2V^{-1}s^{-1}$ and an on/off ratio of about $10^2$.

New p-type Organic Semiconducting Materials for Organic Transistor (유기트랜지스터용 p-type 유기반도체 개발)

  • Kang In-Nam;Lee Ji-Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.6
    • /
    • pp.558-562
    • /
    • 2006
  • We have synthesized a new p-type polymer, poly(9,9'-n-dioctylfluorene-alt-phenoxazine) (PFPO), via the palladium catalyzed coupling reaction. The number average molecular weight ($M_n$) of PFPO was found to be 23,000. PFPO dissolves in common organic solvents such as chloroform and toluene. The UV-visible absorption maximum of the PFPO thin film is clearly blue-shifted with respect to that of F8T2, poly-(9,9'-n-dioctylfluorene-alt-bithiophene). The introduction of the phenoxazine moiety into the polymer system results in better field-effect transistor (FET) performance than that of F8T2. A solution processed PFPO TFT device with a top contact geometry was found to exhibit a hole mobility of $2.7{\times}10^{-4}cm^2/Vs$ and a low threshold voltage of -2 V with high on/off ratio(${\sim}10^4$).

Synthesis of Heterocycle-linked Thioureas and Their Inhibitory Activities of NO Production in LPS Activated Macrophages

  • Cheon, Ye-Jin;Gim, Hyo-Jin;Jang, Hee-Ryun;Ryu, Jae-Ha;Jeon, Raok
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.27-30
    • /
    • 2010
  • A series of thioureas were synthesized as inhibitors of NO production in lipopolysaccharide-activated macrophages. We investigated the effect of lipophilic moiety and N-substituents of the thioureas on the activity. Phenoxazine and carbazole-containing derivatives revealed higher activity than indole-containing thioureas. The appropriate spacer between lipophilic tail and thiourea head and methyl substituent at N3 position of thiourea brought beneficial effect on the inhibition of NO production. Among prepared compounds, phenoxazine-containing derivative 2a was the most potent with $2.32 {\mu}M$ of $IC_{50}$ value. RT-PCR analysis suggested that the prepared thioureas inhibited NO production through the suppression of iNOS mRNA expression.

Efficient orange-red OLED using a new DCM derivative as a doping molecule

  • Hwang, Do-Hoon;Lee, Jong-Don;Lee, Moon-Jae;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.579-581
    • /
    • 2004
  • A new DCM derivative containing the phenoxazine moiety (DCPXZ) has been synthesized for use as a red fluorescent dye molecule in organic light-emitting diodes (OLEDs). The photoluminescence and electroluminescence properties of DCPXZ were examined. The maximum photoluminescence of DCPXZ in chloroform solution ($10^{-5}$ mol) was observed at 616 nm. EL devices were fabricated with the structure ITO/PEDOT-PSS/Cu-PC(15nm)/${\alpha}$-NPD(45nm)/$Alq_3$:DCPXZ(30nm)/$Alq_3$(30nm)/LiF(0.5nm)/Al. The maximum EL emission for the 2.0% DCPXZ-doped device was at 608 nm with CIE coordinates (0.57, 0.42). The EL device exhibited a maximum brightness of 15,000 cd/$m^2$ at 19.4 V and a power efficiency of 1.04 lm/W at a luminance of 100 cd/$m^2$.

  • PDF