DOI QR코드

DOI QR Code

Enantioselective Fluorination of β-Keto Phosphonates and β-Ketoesters Catalyzed by Chiral Palladium Complexes

  • Lee, Na-Ri (Department of Chemistry, Soonchunhyang University) ;
  • Kim, Sun-Mi (Department of Chemistry, Soonchunhyang University) ;
  • Kim, Dae-Young (Department of Chemistry, Soonchunhyang University)
  • Published : 2009.04.20

Abstract

The catalytic enantioselective electrophilic fluorinations of active methine compounds promoted chiral palladium complexes have been developed. Treatment of $\beta$-keto phosphonates and $\beta$-ketoesters with N-fluorobenzenesulfonimide as the fluorine source under mild reaction conditions afforded the corresponding $\alpha$-fluorinated adducts in high yields with excellent enantiomeric excesses (up to 99% ee). These reactions can be conducted in alcoholic solvents without any precaution to exclude water and moisture.

Keywords

References

  1. Chambers, R. D. Fluorine in Organic Chemistry; Blackwell:Oxford, 2004.
  2. Kirsch, P. Modern Fluoroorganic Chemistry:Synthesis, Reactivity, Applications; Wiley-VCH: Weinheim, 2004.
  3. Hiyama, T.; Kanie, K.; Kusumoto, T.; Morizawa, Y.; Shimizu, M. Organofluorine Compounds: Chemistry and Applications; Springer-Verlag: Berlin, 2000.
  4. Biomedical Frontiers of Fluorine Chemistry; Ojima, I.; McCarthy, J. R.; Welch, J. T., Eds.; ACS Symposium Series 639; American Chemical Society: Washington, DC, 1996.
  5. Kirk, K. L. J. Fluorine Chem. 2006, 127, 1013. https://doi.org/10.1016/j.jfluchem.2006.06.007
  6. Isanbor, C.; O'Hagan, D. J. Fluorine Chem. 2006, 127, 303. https://doi.org/10.1016/j.jfluchem.2006.01.011
  7. Bohm, H.-J.; Banmer, D.; Bendels, S.; Kansy, M.; Kuhn, B.; Muller, K.; Obst-Sander, U.; Stahl, M. ChemBioChem 2004, 5, 637. https://doi.org/10.1002/cbic.200301023
  8. Smart, B. E. J. Fluorine Chem. 2001, 109, 3. https://doi.org/10.1016/S0022-1139(01)00375-X
  9. Ismail, F. M. D. J. Fluorine Chem. 2002, 118, 27. https://doi.org/10.1016/S0022-1139(02)00201-4
  10. Asymmetric Fluoroorganic Chemistry: Synthesis, Application, and Future Directions; Ramachandran, P. V., Ed.; ACS Symposium Series 746; American Chemical Society: Washington, DC, 2000.
  11. Enantiocontrolled Synthesis of Fluoro-organic Compounds; Soloshonok, V. A., Ed.; John Wiley & Sons: Chichester, 1999.
  12. Bravo, P.; Resnati, G. Tetrahedron: Asymmetry 1990, 1, 661. https://doi.org/10.1016/S0957-4166(00)82374-5
  13. For reviews: Lal, G. S.; Pez, G. P.; Syvret, R. G. Chem. Rev. 1996, 96, 1737. https://doi.org/10.1021/cr941145p
  14. For reviews: Taylor, S. D.; Kotoris, C. C.; Hum, G. Tetrahedron 1999, 55, 12431. https://doi.org/10.1016/S0040-4020(99)00748-6
  15. For reviews: Mikami, K.; Itoh, Y.; Yamanaka, M. Chem. Rev. 2004, 104, 1. https://doi.org/10.1021/cr030685w
  16. Ibrahim, H.; Togni, A. Chem. Commun. 2004, 1147.
  17. For reviews: Ma, J.-A.; Cahard, D. Chem. Rev. 2004, 104, 6119. https://doi.org/10.1021/cr030143e
  18. France, S.; Weatherwax, A.; Lectka, T. Eur. J. Org. Chem. 2005, 475.
  19. For reviews: Prakash, G. K. S.; Bier, P. Angew. Chem. Int. Ed. 2006, 45, 2172. https://doi.org/10.1002/anie.200503783
  20. Hintermann, L.; Togni, A. Angew. Chem. Int. Ed. 2000, 39, 4359. https://doi.org/10.1002/1521-3773(20001201)39:23<4359::AID-ANIE4359>3.0.CO;2-P
  21. For $\beta$-ketoesters: (a) Kim, D. Y.; Park E. J. Org. Lett. 2002, 4, 545. https://doi.org/10.1021/ol010281v
  22. For $\beta$-ketoesters: Hamashima, Y.; Yagi, K.; Takano, H.; Tamas, L.; Sodeoka, M. J. Am. Chem. Soc. 2002, 124, 14530. https://doi.org/10.1021/ja028464f
  23. For $\beta$-ketoesters: Hamashima, Y.; Takano, H.; Hotta, D.; Sodeoka, M. c. 2003, 5, 3225. https://doi.org/10.1021/ol035053a
  24. For $\beta$-ketoesters: Ma, J.-A.; Cahard, D. Tetrahedron: Asymmetry 2004, 15, 1007. https://doi.org/10.1016/j.tetasy.2004.01.014
  25. For $\beta$-ketoesters: Shibata, N.; Ishimaru, T.; Nagai, T.; Kohno, J.; Toru, T. Synlett 2004, 1703.
  26. For $\beta$-ketoesters: Shibata, N.; Kohno, J.; Takai, K.; Ishimaru, T.; Nakamura, S.; Toru, T.; Kanemasa, S. Angew. Chem. Int. Ed. 2005, 44, 4204. https://doi.org/10.1002/anie.200501041
  27. For $\beta$-ketoesters: Cho, M. J.; Kang, Y. K.; Lee, N. R.; Kim, D. Y. Bull. Korean Chem. Soc. 2007, 28, 2191. https://doi.org/10.5012/bkcs.2007.28.12.2191
  28. For $\alpha$-cyano acetates: (a) Kim, H. R.; Kim, D. Y. Tetrahedron Lett. 2005, 46, 3115. https://doi.org/10.1016/j.tetlet.2005.02.164
  29. Park, E. J.; Kim, H. R.; Joung, C. W.; Kim, D. Y. Bull. Korean Chem. Soc. 2004, 25, 1451. https://doi.org/10.5012/bkcs.2004.25.10.1451
  30. Kim, S. M.; Kang, Y. K.; Cho, M. J.; Kim, D. Y. Bull. Korean Chem. Soc. 2007, 28, 2435. https://doi.org/10.5012/bkcs.2007.28.12.2435
  31. Bernardi, L.; Jorgensen, K. A. Chem. Commun. 2005, 1324.
  32. Hamashima, Y.; Suzuki, T.; Shimura, Y.; Shimizu, T.; Umebayashi, N.: Tamura, T.; Sasamoto, N.; Sodeoka, M. Tetrahedron Lett. 2005, 46, 1447. https://doi.org/10.1016/j.tetlet.2005.01.018
  33. Kim, S. M.; Kim, H. R.; Kim, D. Y. Org. Lett. 2005, 7, 2309. https://doi.org/10.1021/ol050413a
  34. Kim, S. M.; Kang, Y. K.; Lee, K.; Mang, J. Y.; Kim, D. Y. Bull. Korean Chem. Soc. 2006, 27, 423. Ls07Y6 https://doi.org/10.5012/bkcs.2006.27.3.423
  35. Hamashima, Y.; Suzuki, T.; Takano, H.; Shimura, Y.; Tsuchiya, Y.; Moriya, K.; Goto, T.; Sodeoka, M. Tetrahedron 2006, 62, 7168. https://doi.org/10.1016/j.tet.2005.12.070
  36. Kang, Y. K.; Cho, M. J.; Kim, S. M.; Kim, D. Y. Synlett 2007, 1135.
  37. Moriyama, K.; Hamashima, Y.; Sodeoka, M. Synlett 2007, 1139.
  38. Enders, D.; Hüttl, M. R. M. Synlett 2005, 991. https://doi.org/10.1002/anie.200500395
  39. Marigo, M.; Fielenbach, D.; Braunton, A.; Kjærsgaard, A.; Jorgensen, K. A. Angew. Chem. Int. Ed. 2005, 44, 3703. https://doi.org/10.1002/anie.200500571
  40. Steiner, D. D.; Mase, N.; Barbas, C. F., III. Angew. Chem. Int. Ed. 2005, 44,3706. https://doi.org/10.1021/ja051805f
  41. Beeson, T. D.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 8826. https://doi.org/10.1021/ja055545d
  42. Huang, Y.; Walji, A. M.; Larsen, C. H.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 15051. https://doi.org/10.1016/j.jfluchem.2008.11.001
  43. Mang, J. Y.; Kwon, D. G.; Kim, D. Y. J. Fluorine Chem. 2009, 130, 259. https://doi.org/10.1016/j.jfluchem.2008.11.001
  44. Mang, J. Y.; Kwon, D. G.; Kim, D. Y. Bull. Korean Chem. Soc. 2009, 30, 249. https://doi.org/10.5012/bkcs.2009.30.1.249
  45. Lee, J. H.; Bang, H. T.; Kim, D. Y. Synlett 2008, 1821.
  46. Kim, S. M.; Lee, J. H.; Kim, D. Y. Synlett 2008, 2659. https://doi.org/10.5012/bkcs.2008.29.10.2036
  47. Kim, D. Y. Bull. Korean Chem. Soc. 2008, 29, 2036. https://doi.org/10.1016/j.tetlet.2008.07.041
  48. Jung, S. H.; Kim, D. Y. Tetrahedron Lett. 2008, 49, 5527. https://doi.org/10.5012/bkcs.2008.29.11.2091
  49. Mang, J. Y.; Kim, D. Y. Bull. Korean Chem. Soc. 2008, 29, 2091. https://doi.org/10.5012/bkcs.2008.29.11.2093
  50. Kang, Y. K.; Kim, D. Y. Bull. Korean Chem. Soc. 2008, 29, 2093. https://doi.org/10.5012/bkcs.2008.29.11.2093
  51. Kang, Y. K.; Kim, D. Y. Tetrahedron Lett. 2006, 47, 4265. https://doi.org/10.5012/bkcs.2006.27.6.857
  52. Cho, M. J.; Cho, M. G.; Huh, S. C.; Kim, S. M.; Lee, K.; Koh, K. O.; Mang, J. Y. Bull. Korean Chem. Soc. 2006, 27, 857. https://doi.org/10.1021/jo0401772
  53. Park, E. J.; Kim, M. H.; Kim, D. Y. J. Org. Chem. 2004, 69, 6897. https://doi.org/10.1021/jo0401772
  54. Kim, D. Y.; Huh, S. C. Bull. Korean Chem. Soc. 2004, 25, 347. https://doi.org/10.5012/bkcs.2004.25.3.347
  55. Kim, D. Y.; Kim, S. M.; Koh, K. O.; Mang, J. Y. Bull. Korean Chem. Soc. 2003, 24, 1425. https://doi.org/10.1081/SCC-120015774
  56. Kim, D. Y.; Choi, Y. J.; Park, H. Y.; Joung, C. U.; Koh, K. O.; Mang, J. Y.; Jung, K.-Y. Synth. Commun. 2003, 33, 435. https://doi.org/10.1016/S0040-4039(01)01237-0
  57. Kim, D. Y.; Huh, S. C.; Kim, S. M. Tetrahedron Lett. 2001, 42, 6299. https://doi.org/10.1016/S0040-4020(01)00891-2
  58. Kim, D. Y.; Huh, S. C. Tetrahedron 2001, 57, 8933. https://doi.org/10.1016/S0040-4020(01)00891-2
  59. Li, K.; Hii, K. K. Chem. Commun. 2003, 1132. https://doi.org/10.1016/S0022-328X(02)02138-1
  60. Li, K.; Horton, P. N.; Hursthouse, M. B.; Hii, K. K. J. Organometallic Chem. 2003, 665, 250 https://doi.org/10.1016/S0022-328X(02)02138-1
  61. Tsuji, J. Palladium Reagents and Catalysts: New Perspectives for 21st Century; John Willey & Son: Chichester, 2004.
  62. Shimada, T.; Bajracharya, G. B.; Yamamoto, Y. Eur. J. Org. Chem. 2005, 59, and references cited therein. https://doi.org/10.1016/j.ccr.2004.11.005
  63. Vicente, J.; Arcas, A. Cood. Chem. Rev. 2005, 249, 1135. https://doi.org/10.1016/S0022-1139(01)00478-X
  64. Berkowitz, D. B.; Bose, M. c. 2001, 112, 13. https://doi.org/10.1016/S0022-1139(01)00478-X
  65. Nieschalk, J.; O'Hagan, D. Chem. Commun. 1995, 719.
  66. Nieschalk, J.; O'Hagan, D. Chem. Commun. 1995, 719.
  67. Jakeman, D. L.; Ivory, A. J.; Willamson, M. P.; Blackburn, G. M. J. Med. Chem. 1998, 41, 4493.
  68. Jakeman, D. L.; Ivory, A. J.; Willamson, M. P.; Blackburn, G. M. J. Med. Chem. 1998, 41, 4493. https://doi.org/10.1021/jo000220v
  69. Berkowitz, D. B.; Bose, M.; Pfannenstiel, T. J.; Doukov, T. J. Org. Chem. 2000, 65, 4498. https://doi.org/10.1021/jo000220v
  70. Kim, D. Y.; Kong, M. S.; Lee, K. J. Chem. Soc., Perkin Trans. 1 1997, 1361. https://doi.org/10.1080/00397919608004561
  71. Kim, D. Y.; Kong, M. S.; Kim, T. H. Synth. Commun. 1996, 26, 2487. https://doi.org/10.1080/00397919508011834
  72. Kim, D. Y.; Kong, M. S.; Rhie, D. Y. Synth. Commun. 1995, 25, 2865. https://doi.org/10.1080/00397919508011834
  73. Kim, D. Y.; Kong, M. S. J. Chem. Soc., Perkin Trans. 1 1994, 3359.
  74. Kim, D. Y.; Rhie, D. Y. Tetrahedron Lett. 1997, 40, 13603. https://doi.org/10.1016/S0022-1139(98)00254-1
  75. Chambers, R. D.; Hutchinson, J. J. Fluorine Chem. 1998, 92, 45. https://doi.org/10.1016/S0022-1139(98)00254-1
  76. Chambers, R. D.; Greenhall, M. P.; Hutchinson, J. Tetrahedron 1996, 52, 1. https://doi.org/10.1021/jo00016a022
  77. Resnati, G.; DesMarteau, D. D. J. Org. Chem. 1991, 56, 4925. https://doi.org/10.1021/jo00016a022
  78. Gori, G.; Bartolucci, G. B.; Sturaro, A.; Pavoli, G.; Doretti, L.; Troiano, R.; Casetta, B. J. Chromatography B 1995, 165.

Cited by

  1. ChemInform Abstract: Enantioselective Fluorination of β-Keto Phosphonates and β-Ketoesters Catalyzed by Chiral Palladium Complexes. vol.40, pp.36, 2009, https://doi.org/10.1002/chin.200936035
  2. Catalytic Enantioselective Fluorination of α-Chloro-β-keto Esters in the Presence of Chiral Nickel Complexes vol.352, pp.16, 2010, https://doi.org/10.1002/adsc.201000515
  3. Asymmetric Conjugate Addition of 1-Fluoro-1-nitro(phenylsulfonyl)methane to Chalcones Catalyzed by Binaphthyl-Derived Organocatalyst vol.33, pp.9, 2012, https://doi.org/10.5012/bkcs.2012.33.9.2845
  4. Substrate Range of the Titanium TADDOLate Catalyzed Asymmetric Fluorination of Activated Carbonyl Compounds vol.95, pp.3, 2012, https://doi.org/10.1002/hlca.201100375
  5. Highly Enantioselective Preparation of Fluorinated Phosphonates by Michael Addition of α-Fluoro-β-ketophosphonates to Nitroalkenes vol.3, pp.4, 2013, https://doi.org/10.1002/ajoc.201300211
  6. Pd-catalyzed highly regio-, diastereo-, and enantioselective allylic alkylation of α-fluorophosphonates vol.50, pp.51, 2014, https://doi.org/10.1039/C4CC02158D
  7. Asymmetric Michael addition of α-fluoro-α-nitroalkanes to nitroolefins: facile preparation of fluorinated amines and tetrahydropyrimidines vol.50, pp.66, 2014, https://doi.org/10.1039/C4CC03513E
  8. Monofluorination of Organic Compounds: 10 Years of Innovation vol.115, pp.17, 2015, https://doi.org/10.1021/cr500706a
  9. Thiourea-catalyzed Intramolecular Allylic Amination: Synthesis of Dihydroquinoline Derivatives vol.36, pp.1, 2015, https://doi.org/10.1002/bkcs.10014
  10. Designing Fluorinated Cinchona Alkaloids for Enantioselective Catalysis: Controlling Internal Rotation by a Fluorine-Ammonium Ion gauche Effect (φNCCF) vol.18, pp.7, 2012, https://doi.org/10.1002/chem.201102859
  11. Chiral Pd aqua complex-catalyzed asymmetric C–C bond-forming reactions: a Brønsted acid–base cooperative system pp.39, 2009, https://doi.org/10.1039/b911015a
  12. Palladium-catalyzed Asymmetric Mannich-type Reactions of α-Cyanoketones with N-Boc Aldimines vol.30, pp.7, 2009, https://doi.org/10.5012/bkcs.2009.30.7.1437
  13. Enantioselective Conjugate Addition of Fluoromalonate to Nitroalkenes Catalyzed by Chiral Nickel Complexes vol.30, pp.7, 2009, https://doi.org/10.5012/bkcs.2009.30.7.1439
  14. Organocatalytic Asymmetric Michael Addition of β-Ketoesters to Nitroalkenes vol.30, pp.7, 2009, https://doi.org/10.5012/bkcs.2009.30.7.1441
  15. Catalytic enantioselective conjugate addition of aromatic amines to fumarate derivatives: asymmetric synthesis of aspartic acid derivatives vol.65, pp.29, 2009, https://doi.org/10.1016/j.tet.2009.05.037
  16. Organocatalytic Enantioselective Synthesis of Tertiary α-Hydroxy Phosphonates vol.32, pp.3, 2009, https://doi.org/10.5012/bkcs.2011.32.3.785
  17. Microwave-Assisted Organocatalytic Synthesis of Tetrahydroquinolines via Hydride Transfer and Cyclization vol.32, pp.5, 2009, https://doi.org/10.5012/bkcs.2011.32.5.1773
  18. Organocatalytic Enantioselective Michael Addition of α-Nitroacetate to α,β-Unsaturated Enones: A Route to Chiral γ-Nitro Ketones and δ-Keto Esters vol.32, pp.1, 2011, https://doi.org/10.5012/bkcs.2011.32.1.291
  19. Asymmetric Mannich-type Reactions of Fluorinated Ketoesters with Binaphthyl-Modified Thiourea Catalysts vol.32, pp.4, 2009, https://doi.org/10.5012/bkcs.2011.32.4.1195
  20. Enantioselective Conjugate Addition of Anthrone to Nitroalkenes Catalyzed by Binaphthyl-Modified Organocatalyst vol.32, pp.8, 2009, https://doi.org/10.5012/bkcs.2011.32.8.2875
  21. Catalytic Enantioselective Fluorination of α-Cyanosulfones in the Presence of Chiral Palladium Complexes vol.33, pp.8, 2012, https://doi.org/10.5012/bkcs.2012.33.8.2481
  22. Modern Approaches for Asymmetric Construction of Carbon-Fluorine Quaternary Stereogenic Centers: Synthetic Challenges and Pharmaceutical Needs vol.118, pp.7, 2009, https://doi.org/10.1021/acs.chemrev.7b00778
  23. Enantioselective Organocatalytic Mannich Reaction and Fluorination Sequence of Pyrazolones to Isatin‐derived Ketimines vol.39, pp.12, 2018, https://doi.org/10.1002/bkcs.11625
  24. Organocatalytic Enantioselective Cycloaddition of o ‐Quinone Methides with Oxazolones: Asymmetric Synthesis of Dihydrocoumarins vol.5, pp.42, 2020, https://doi.org/10.1002/slct.202003817
  25. The organocatalytic enantiodivergent fluorination of β-ketodiaryl-phosphine oxides for the construction of carbon-fluorine quaternary stereocenters vol.57, pp.16, 2009, https://doi.org/10.1039/d0cc07770d