• Title/Summary/Keyword: Chiral palladium complexes

Search Result 8, Processing Time 0.017 seconds

Catalytic Enantioselective Fluorination Reactions of α-Cyano Acetates and α-Cyanophosphonates Using Chiral Palladium Complexes

  • Kim, Sun-Mi;Kang, Young-Ku;Cho, Min-Je;Mang, Joo-Yang;Kim, Dae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2435-2441
    • /
    • 2007
  • The catalytic enantioselective electrophilic fluorinations of active methane compounds promoted chiral palladium complexes have been developed. Treatment of α-cyano acetates and α-cyanoalkylphosphonates with N-fluorobenzenesulfonimide as the fluorine source under mild reaction conditions afforded the corresponding α-cyano-α-fluorinated adducts in high yields with excellent enantiomeric excesses (up to 99% ee). These reactions can be conducted in alcoholic solvents without any precaution to exclude water and moisture.

Enantioselective Fluorination of β-Keto Phosphonates and β-Ketoesters Catalyzed by Chiral Palladium Complexes

  • Lee, Na-Ri;Kim, Sun-Mi;Kim, Dae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.829-836
    • /
    • 2009
  • The catalytic enantioselective electrophilic fluorinations of active methine compounds promoted chiral palladium complexes have been developed. Treatment of $\beta$-keto phosphonates and $\beta$-ketoesters with N-fluorobenzenesulfonimide as the fluorine source under mild reaction conditions afforded the corresponding $\alpha$-fluorinated adducts in high yields with excellent enantiomeric excesses (up to 99% ee). These reactions can be conducted in alcoholic solvents without any precaution to exclude water and moisture.

Synthesis of $\pi$-Allyl-type Cobalt, Palladium, Platinum Complexes Having a $C_2$-Chiral Ligand ($C_2$ 손대칭 리간드를 배위하는 $\pi$-Allyl-Cobalt, Palladium, Platinum 착물의 생성)

  • Uhm, Jae Kook;Lee, Jong O;An, Hee Won
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.2
    • /
    • pp.177-183
    • /
    • 1998
  • By the reactions of a $C_{2}$-chiral ligand, (+)-11S,12S-bis[2,2'-(diphenylphosphino)benzanilido]-9,10-dihydro-9,10-ethanoanthracene(6) with $[\pi-allyl chloroplatinum(II)]_4$, and $CpCo(CO)_2$ respectively, three new complexes, ($\pi$-allyl)platinum(II)(+)-11S,12S-bis[2,2'-(diphenylphosphino)benzanilido]-9,10-dihydro-9,10-ethanoanthracene perchlorate(1), ($\pi$-allyl)platinum(II)(+)-11S,12S-bis[2,2'-(diphenylphosphino)benzanilido]-9,10-dihydro-9,10-ethanoanthracene chloride(2), ($\eta^5$-cyclopentadienyl)cobalt(I)-(+)-11S,12S-bis[2,2'-(diphenylphosphino)benzanilido]-9,10-dihydro-9,10-ethanoanthracene(3) were prepared. $\eta^3$-Cyclohexenyl)palladium(II)1,2-bis(diphenylphosphino)ethane perchlorate(4) was obtained by the reaction of ($\eta^3$-cyclohexenyl)palladium(II) chloride dimer with a symmetric ligand, 1,2-bis(diphenylphosphino)ethane and lithium perchlorate. These complexes were identified by NMR-, IR-, and Mass-Spectrophotometers and elemental analyzer.

  • PDF

Chiral [Iminophosphoranyl]ferrocenes: Synthesis, Coordination Chemistry, and Catalytic Application

  • Co, Thanh Thien;Shim, Sang-Chul;Cho, Chan-Sik;Kim, Dong-Uk;Kim, Tae-Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.9
    • /
    • pp.1359-1365
    • /
    • 2005
  • A series of new chiral [iminophosphoranyl]ferrocenes, {${\eta}^5-C_5H_4-(PPh_2=N-2,6-R_2-C_6H_3)$}Fe{${\eta}^5-C_5H_3-1-PPh^2-2-CH(Me)NMe_2$} (1: R = Me, $^iPr$), {${\eta}^5{-C_5H_4-(PPh_2=N-2,6-R_2}^1-C_6H_3)$}Fe{${\eta}^5-C_5H_3-1-(PPh_2=N-2,6-R_2-C_6H_3)-2-CH(Me)R_2$} (2: $R^1\;=\;Me,\;^iPr;\;R^2\;=\;NMe_2$, OMe), and $({\eta}^5-C_5H_5)Fe${${\eta}^5-C_5H_4-1-PR_2-2-CH(Me)N=PPh_3$} (3:R = Ph, $C_6H_{11}$) have been prepared from the reaction of [1,1'-diphenylphosphino-2-(N,N-dimethylamino) ethyl]ferrocene with arylazides (1 & 2) and the reaction of phosphine dichlorides ($R_3PCl_{2}$) with [1,1'-diphenylphosphino-2-aminoethyl]ferrocene (3), respectively. They form palladium complexes of the type $[Pd(C_3H_5)(L)]BF_4$ (4-6: L = 1-3), where the ligand (L) adopts an ${\eta}^2-N,N\;(2)\;or\;{\eta}^2$-P,N (3) as expected. In the case of 1, a potential terdentate, an ${\eta}^2$-P,N mode is realized with the exclusion of the –=NAr group from the coordination sphere. Complexes 4-6 were employed as catalysts for allylic alkylation of 1,3-diphenylallyl acetate leading to an almost stoichiometric product yield with modest enantiomeric excess (up to 74% ee). Rh(I)-complexes incorporating 1-3 were also prepared in situ for allylic alkylation of cinnamyl acetate as a probe for both regio- and enantioselectivities of the reaction. The reaction exhibited high regiocontrol in favor of a linear achiral isomer regardless of the ligand employed.