DOI QR코드

DOI QR Code

Regeneration of a Micro-Scratched Tooth Enamel Layer by Nanoscale Hydroxyapatite Solution

  • Ryu, Su-Chak (College of Nanoscience and Nanotechnology, Pusan National University) ;
  • Lim, Byoung-Ki (College of Nanoscience and Nanotechnology, Pusan National University) ;
  • Sun, Fangfang (College of Nanoscience and Nanotechnology, Pusan National University) ;
  • Koh, Kwang-Nak (College of Nanoscience and Nanotechnology, Pusan National University) ;
  • Han, Dong-Wook (College of Nanoscience and Nanotechnology, Pusan National University) ;
  • Lee, Jae-Beom (College of Nanoscience and Nanotechnology, Pusan National University)
  • Published : 2009.04.20

Abstract

Hydroxyapatite (HAp)-based materials have attracted considerable attention on account of their excellent stability and recrystallization. Nanoscale HAp powders with a mean particle size of 200 nm were used to regenerate the enamel layers of damaged teeth. An artificially scratched tooth was immersed in a nanoscale HAp powder suspension in d.i. water (HAp of 70 wt%) at 37 ${^{\circ}C}$ for a period of 1~3 months. SEM and AFM showed that the scratched surface was ultimately inlaid with HAp after three months and the roughness increased from 2.80 to 5.51. Moreover, the hardness of the neo-generated HAp layer on the crown was similar to that of the innate layer. $Ca^{2+}$ and ${PO_4}^{3-}$ ions from the HAp powders dissolved in d.i. water were precipitated on the tooth to produce cemented pasteson the enamel surface due to its high recrystallizing characteristics, resulting in a hard neo-regenerated HAp layer on the enamel layer. This nanoscale HAp powder solution might be used to heal decayed teeth as well as to develop tooth whitening appliances.

Keywords

References

  1. Nakamura, S.; Kobayashi, T.; Yamashita, K. J. Biomed. Mater. Res. 2002, 61, 593-599. https://doi.org/10.1002/jbm.10224
  2. Begley, C. T.; Doherty, M. J.; Mollan, R. A.; Wilson, D. J. Biomaterial 1995, 16, 1181-1185. https://doi.org/10.1016/0142-9612(95)93584-Z
  3. Studart, A. R.; Filser, F.; Kocher, P.; Gauckler, L. J. Biomaterial 2007, 28, 2695-2705. https://doi.org/10.1016/j.biomaterials.2006.12.033
  4. Sautier, J. M.; Kokubo, T.; Ohtsuki, T.; Nefussi, J. R.; Boulekbache, H.; Oboeuf, M.; Loty, S.; Loty, C.; Forest, N. Calcif. Tissue Int. 1994, 55, 458-466. https://doi.org/10.1007/BF00298560
  5. Ogiso, M. J. Biomed. Mater. Res. 1998, 43, 318-320. https://doi.org/10.1002/(SICI)1097-4636(199823)43:3<318::AID-JBM13>3.0.CO;2-B
  6. Kim, S. H.; Lim, B. K.; Sun, F. F.; Koh, K. N.; Ryu, S. C.; Kim, H. S.; Lee, J. B. Polym. Bull. 2009, 62, 111-118. https://doi.org/10.1007/s00289-008-1008-5
  7. Mun, B. B.; Jung, K. H.; Chai, Y. G.; Kim, H. K. Bull. Korean Chem. Soc. 2007, 28, 652-656. https://doi.org/10.5012/bkcs.2007.28.4.652
  8. Suzuki, O.; Imaizumi, H.; Kamakura, S.; Katagiri, T. Current Medicinal Chemistry 2008, 15(3), 305-313. https://doi.org/10.2174/092986708783497283
  9. Skrtic, D.; Antonucci, J. M.; Eanes, E. D. Journal of Research of the National Institute of Standards and Technology 2003, 108(3), 167-182. https://doi.org/10.6028/jres.108.017
  10. Yoshikawa, M.; Tsuji, N.; Toda, T.; Machida, H.; Ohgushi, H. Key Engineering Materials 2005, 284-286, 321-324. https://doi.org/10.4028/www.scientific.net/KEM.284-286.321
  11. Choi, J. Y.; Lee, H. H.; Kim, H. W. J. Mater. Sci. Mater. Med. 2008, 19(10), 3287-3294. https://doi.org/10.1007/s10856-008-3464-8
  12. Dash, A. K.; Cudworth, G. C. II. J. Pharmacol. Toxicol. Methods 1998, 40, 1-12. https://doi.org/10.1016/S1056-8719(98)00027-6
  13. Jun, Y. K.; Kim, W. H.; Kweon, O. K.; Hong, S. H. Biomaterials 2003, 24, 3731-3739. https://doi.org/10.1016/S0142-9612(03)00248-5
  14. Gibson, I. R.; Best, S. M.; Bonfield, W. J. Biomed. Mater. Res. 1999, 44, 422-428. https://doi.org/10.1002/(SICI)1097-4636(19990315)44:4<422::AID-JBM8>3.0.CO;2-#
  15. Fausser, J. L.; Schlepp, O.; Aberdam, D.; Meneguzzi, G.; Ruch, J. V.; Lesot, H. Differentiation 1998, 63, 1-11. https://doi.org/10.1046/j.1432-0436.1998.6310001.x
  16. Kieffer-Combeau, S.; Meyer, J. M.; Lesot, H. Int. J. Dev. Biol. 2001, 45, 733-742.
  17. Wutticharoenmongkol, P.; Sanchavanakit, N.; Pavasant, P.; Supaphol, P. Macromol. Biosci. 2005, 6, 70-77.
  18. Liao, S.; Tamura, K.; Zhu, Y.; Wang, W.; Uo, M.; Akasaka, T.; Cui, F.; Watari, F. J. Biomed. Mater. Res. A 2005, 76A, 820-825.
  19. Degirmenbasi, N.; Kalyon, D. M.; Birinci, E. Colloids Surf. B Biointerfaces 2006, 48, 42-49. https://doi.org/10.1016/j.colsurfb.2006.01.002
  20. Kong, L.; Gao, Y.; Lu, G.; Gong, Y.; Zhao, N.; Zhang, X. Eur. Polym. J. 2006, 42, 3171-3179. https://doi.org/10.1016/j.eurpolymj.2006.08.009
  21. Jie, W.; Yubao, L.; Weiqun, C.; Yi, Z. J. Mater. Sci. 2003, 38, 3303-3306. https://doi.org/10.1023/A:1025194122977

Cited by

  1. Nanophase Hydroxyapatite as a Biomaterial in Advanced Hard Tissue Engineering: A Review vol.19, pp.5, 2013, https://doi.org/10.1089/ten.teb.2012.0624
  2. Characterization and Preparation of Calcium Phosphate Model Toothpaste for Tooth Enamel Remineralization vol.721, pp.1662-9795, 2016, https://doi.org/10.4028/www.scientific.net/KEM.721.213
  3. Enamel biomimetics—fiction or future of dentistry vol.11, pp.1, 2019, https://doi.org/10.1038/s41368-018-0038-6
  4. Fabrication of Hydroxyapatite Ceramics to Mimic the Natural Bone Structure vol.48, pp.5, 2009, https://doi.org/10.4191/kcers.2011.48.5.390
  5. Biocompatibility of Nanoscale Hydroxyapatite-embedded Chitosan Films vol.33, pp.12, 2009, https://doi.org/10.5012/bkcs.2012.33.12.3950