DOI QR코드

DOI QR Code

3D-QSARs of Herbicidal 2-N-Phenylisoindolin-1-one Analogues as a New Class of Potent Inhibitors of Protox

  • Soung, Min-Gyu (Division of Applied Biologies and Chemistry, College of Agriculture and Life Science, Chungnam National University) ;
  • Lee, Yoon-Jung (Division of Applied Biologies and Chemistry, College of Agriculture and Life Science, Chungnam National University) ;
  • Sung, Nack-Do (Division of Applied Biologies and Chemistry, College of Agriculture and Life Science, Chungnam National University)
  • Published : 2009.03.20

Abstract

3D-QSARs for the inhibition activities against protox by herbicidal 2-N-phenylisoindolin-1-one derivatives were studied quantitatively using CoMFA and CoMSIA methods. The result of the statistical quality of optimized CoMSIA model 2 ($FF:\;{r^2}_{cv.};\;0.973\;&\;{r^2}_{ncv.};\;0.612$) was higher than that of CoMFA model 1 ($AF:\;{r^2}_{cv.};\;0.414\;&\;{r^2}_{ncv.};\;0.909$). Also, the relative contribution of the optimized CoMSIA model 2 showed the steric (24.6%), electrostatic (31.0%), hydrophobic (ClogP, 23.4%) and H-bond acceptor field (21.0%), respectively. From the results of the contour maps, the protox inhibition activities are expected to increase when steric favor and H-bond acceptor favor groups are substituted on $R_2$ position and positive favor group are substituted on $C_2,\;C_3,\;and\;C_5$ atom in phenyl ring of $R_2$ position. And the inhibition activities are expected to increase when hydrophobic favor group is substituted on $C_1,\;C_3$ atom in phenyl ring of $R_2$ position and $C_1$ atom of $R_2$ position and hydrophilic favor groups are substituted on $C_4$ atom in phenyl ring of $R_1$ position and the terminal group of $R_1$ position.

Keywords

References

  1. Boger, P.; Wakabayashi, K. In Peroxidizing Herbicides; Springer-Verlag: Berline, Heidelberg, Germany, 1999
  2. Fujita, T. In Agrochemical Discovery, Insect, Weed, and Fungal Control: Similarities in Bioanalogous Structural Transformation Patterns, ACS Symposium Series; Baker, D. R.; Umetsu, N. K., Eds.; American Chemical Society: Washington DC, 2002; Ch. 15, No. 774
  3. Hiraki, M.; Ohki, S.; Sato, Y.; Jablonkai, I.; Boger, P.; Wakabayashi, K. Pesticide Biochemistry and Physiology 2001, 70, 159 https://doi.org/10.1006/pest.2001.2552
  4. Ishida, S.; Miller-Sulger, R.; Kohno, H.; Boger, P.; Wakabayashi, K. J. Pestic. Sci. 2000, 25, 18 https://doi.org/10.1584/jpestics.25.18
  5. Iida, T.; Uchida, A.; Uraguchi, R.; Sato, Y.; Boger, P.; Wakabayashi, K. J. Pestic. Sci. 1997, 22, 303 https://doi.org/10.1584/jpestics.22.303
  6. Ishida, S.; Hirai, K.; Kohno, H.; Sato, Y.; Kubo, H.; Boger, P.; Wakabayashi, K. J. Pestic. Sci. 1997, 22, 299 https://doi.org/10.1584/jpestics.22.299
  7. Pallett, K. E. Proceeding of Bringhton Crop Protection Conference-Weeds; 1997; p 575
  8. Theodoridis, G. Pestic. Sci. 1997, 50, 283 https://doi.org/10.1002/(SICI)1096-9063(199708)50:4<283::AID-PS600>3.0.CO;2-L
  9. Theodoridis, G.; Bahr, J. T.; Hotzman, F. W.; Sehgel, S.; Suarez, D. P. Crop Prot. 2000, 19, 533 https://doi.org/10.1016/S0261-2194(00)00069-7
  10. Hiraki, M.; Ohki, S.; Sato, Y.; Jablonkai, I.; Boger, P.; Wakabayashi, K. Pesticide Biochemistry and Physiology 2001, 70, 159 https://doi.org/10.1006/pest.2001.2552
  11. Watanabe, N.; Takayama, S.; Yoshida, S.; Isogai, A.; Che, F. S. Biosci. Biotechnol. Biochem. 2002, 66, 1799 https://doi.org/10.1271/bbb.66.1799
  12. Dayan, F. E.; Duke, S. O.; Reddy, K. N.; Hamper, B. C.; Leschinsky, K. L. J. Agric. Food Chem. 1997, 45, 967 https://doi.org/10.1021/jf9607019
  13. Sung, N. D.; Ock, H. S.; Chung, H. J.; Song, J. H.; Lee, Y. G. Kor. J. Pest. Sci. 2003, 7, 75
  14. Sung, N. D.; Ock, H. S.; Chung, H. J.; Song, J. H. Kor. J. Pest. Sci. 2003, 7, 100
  15. Sung, N. D.; Song, J. H.; Yang, S. Y.; Park, K. Y. Kor. J. Pest. Sci. 2004, 8, 151
  16. Sung, N. D.; Song, J. H.; Park, K. Y. J. Kor. Soc. Appl. Biol. Chem. 2004, 47, 351
  17. Sung, N. D.; Song, J. H.; Park, K. Y. J. Kor. Soc. Appl. Biol. Chem. 2004, 47, 414
  18. Cramer, R. D., III; Patterson, D. E.; Bunce, J. E. J. Am. Chem. Soc. 1988, 110, 5959 https://doi.org/10.1021/ja00226a005
  19. Klebe, G.; Abraham, U.; Mietzner, T. J. Med. Chem. 1994, 37, 4130 https://doi.org/10.1021/jm00050a010
  20. Cho, Y. G.; Soung, M. G.; Sung, N. D. 2007 International Symposium and Annual Meeting of the KSABC, Gyeongju, Korea, 2007
  21. Johan, B. Photochem and Photobiol. 1963, 2, 241 https://doi.org/10.1111/j.1751-1097.1963.tb08220.x
  22. Hiscox, J. D.; Israelstan, G. F. Can. J. Bot. 1978, 57, 1332 https://doi.org/10.1139/b79-163
  23. Tripos, Sybyl. Molecular Modeling and QSAR Software on CD-Rom (Ver. 7.3); Triopos Associates, Inc.: Suite 303, St. Louis, MO
  24. Purcell, W. P.; Singer, J. A. J. Chem. Eng. Data 1967, 122, 235
  25. Gasteiger, J.; Marsili, M. Tetrahedron 1980, 36, 3219 https://doi.org/10.1016/0040-4020(80)80168-2
  26. Kerr, R. Biophys. J. 1964, 67, 1501 https://doi.org/10.1016/S0006-3495(94)80624-1
  27. Marshall, G. R.; Barry, C. D.; Bosshard, H. E.; Dammkoehler, R. A.; Dunn, D. A. In Computer-assisted Drug Design: The Conformational Parameter in Drug Design; Active Analog Approach; Olsen, E. C.; Christoffersen, R. E., Eds.; American Chemical Society: Washington, D.C., 1979; p 205
  28. Clark, M.; Cramer III, R. D.; Jones, D. M.; Patterson, D. E.; Simeroth, P. E. Tetrahedron Comput. Methodol. 1990, 3, 47 https://doi.org/10.1016/0898-5529(90)90120-W
  29. Stahle, L.; Wold, S. Progr. Med. Chem. 1988, 25, 292
  30. Cramer, R. D.; Bunce, J. D.; Patterson, D. E. Quant. Struct. Act. Relat. 1988, 7, 18 https://doi.org/10.1002/qsar.19880070105

Cited by

  1. 4-Methyl-2H-benzopyran-2-one 유도체들의 항산화 활성에 관한 Benzo 고리상 치환기들의 영향 vol.53, pp.2, 2009, https://doi.org/10.3839/jabc.2010.018
  2. Synthesis and 3D-QSARs Analyses of Herbicidal O,O-Dialkyl-1-phenoxyacetoxy-1-methylphosphonate Analogues as a New Class of Potent Inhibitors of Pyruvate Dehydrogenase vol.31, pp.5, 2009, https://doi.org/10.5012/bkcs.2010.31.5.1361
  3. 3D-QSAR Study on the Influence of Alrylamino (R) Substituents on Herbicidal Activity of Thiourea Analogues vol.31, pp.6, 2009, https://doi.org/10.5012/bkcs.2010.31.6.1469
  4. Minimum Structural Requirements for Fungicidal Evaluation of N-Phenyl-O-phenylthionocarbamates against the Capsicum Phytophthora Blight (Phyophthora capsici) Based on the 3D-QSARs vol.31, pp.11, 2009, https://doi.org/10.5012/bkcs.2010.31.11.3297