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3D-QSARs for the inhibition activities against protox by herbicidal 2-N-phenylisoindolin-1-one derivatives were 
studied quantitatively using CoMFA and CoMSIA methods. The result of the statistical quality of optimized
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CoMSIA model 2 (FF: r cv.； 0.973 & r ncv.； 0.612) was higher than that of CoMFA model 1 (AF: r cv.； 0.414 & r ncv.； 
0.909). Also, the relative contribution of the optimized CoMSIA model 2 showed the steric (24.6%), electrostatic 
(31.0%), hydrophobic (ClogP, 23.4%) and H-bond acceptor field (21.0%), respectively. From the results of the 
contour maps, the protox inhibition activities are expected to increase when steric favor and H-bond acceptor favor 
groups are substituted on R2 position and positive favor group are substituted on C2, C3, and C5 atom in phenyl ring 
of R2 position. And the inhibition activities are expected to increase when hydrophobic favor group is substituted on 
C1 and C3 atom in phenyl ring of R2 position and Cl atom of R1 position and hydrophilic favor groups are substituted 
on C4 atom in phenyl ring of R2 position and the terminal group of R1 position.
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Introduction

Protox(protoporphyrinogen oxidase: EC 1.3.3.4) inhibitory 
peroxidizing herbicides1 have been reported on herbicidal 
activity according to the modification of alkoxyanilino- 
substituents in the 2-fluoro-4-chloro-5-alkoxyanilino group.2-6 
Especially, the study for the change of heterocyclic group is 
actively working.7 The common ones of eight types in herero- 
cyclic group are cyclopentane, tetrahydrophthalimide and 
bicyclic five-membered heterocyclic analogues. Cyclopentane 
cyclic groups act as a steric factor to fix the position of 
alicyclic and benzene ring.

For improving herbicidal activity of protox herbicides, 
SAR (structure-activity relationship) has been studied.8 
Based on these results, benzoheterocyclic uracil analogues as 
new protox inhibitors were studied.9,10 Recently, the study of 
herbicidal activity and biochemistry, and also the physio
logical studies about N-(4-chloro-2-fluoro-5-propagyloxy) 
phenyl-3,4,5,6-tetrahydrophthalimide analogues have been 
reported.11,12 As part of other trials we reported13,14 molecular 
similarity about not only inhibition activity of N-substitution- 
phenyl-3,4,5,6-tetrahydrophthalimide and N-substituted-ph- 
enyl-3,4-dimethylmaleimide analogues but also CoMFA 
analysis. Especially, it is possible to understand the results of 
CoMFA, CoMSIA and HQSAR,15-17 about protox inhibition 
activity of 1-(5-methyl-3-phenylisoxazolin-5-yl)-methoxy-2- 
chloro-4-fluorobenzene analogues. Moreover, in the 2-fluoro- 
4-chloro5-alkoxy-anilino group, it was found that the change 
of alkoxyanilino group on C5 atomic position was more 
effective than the change of C-phenyl group on herbicidal 
activity. Also protox inhibition activities are more improved 
when ortho position of C-phenyl group was substituted by the 
more steric bulky groups.

In this study, the authors have applied CoMFA (comparative 
molecular field analysis)18 and CoMSIA (comparative mole

cular similarity indices analysis)19 as 3D-QSARs (3 dimen
sional quantitative structure-activity relationships) method to 
the herbicidal 2-N-phenylisoindolin-1-one analogues as a 
new class of potent inhibitors of protox.

Materials and Methods

Protox Inhibition Activity. To measure protox inhibition 
activity of substrate compounds synthesized by author’s 
published reference,20 the barley and counted chlorophyll 
contents21,22 were selected. Inhibition rate (IN) was calculated 
by using formula (1).

in(%)=100 - (笑y으竺些* 100 
Control (1)Control

From IN (%), the 50% of inhibitory concentration (EC50) 
was counted. Then formula (2) was inserted and concen
tration (ppm) was converted into mole concentration (M). 
Then, the inhibition activity (pI50) was counted from the 
inversed value of mole concentration with application of -log.

EC50(ppm)Qbs. pI50= -log(-----------(虫^----- )

k M.Wt. X 1,000 丿
(2)

Molecular Modeling. All molecular modeling studies, 
statistical analyses, CoMFA and CoMSIA analyses were 
performed using SYBYL (Ver. 8.0) program (Tripos Inc.).23 
We carried out CoMFA and CoMSIA analyses to understand 
quantitatively on the structure-activity relationships (SARs) 
with 2-N-phenylisoindolin-1-one analogues (Fig. 1),20 as the 
substrate compounds, and Protox inhibition activity (Obs.pI5c). 
Atom partial charge used in the study was applied Gasteiger- 
Huckel charges24,25 and the most stable conformation of the 
molecules was obtained by simulated annealing method.26 In 
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this study, CoMFA and CoMSIA models were achieved from 
training set (n = 31) in the data set (n = 37) compounds and 
predictions for the models were evaluated from test set (n = 6) 
compounds. Two different alignment rules in the present 

27study were used: atom based fit (AF) alignment and field 
fit (FF) alignment.28 AF alignment was alignment of the 
potential energy minimized substrate structures and the 
results of the alignment of the molecules using AF alignment 
as shown in Figure 2. On the contour maps, the rate of favor 
and disfavor contribution (%) was 80% and 20%, respectively.

C이culation of PLS. To conduct CoMFA and CoMSIA 
model, training set and test set was set arbitrarily. Correla
tionships between 3D-structural feature of aligned compounds 
on three dimensional spaces and biological activities were 

29 calculated by using the PLS (partial least squared) method. 
The cross-validated method was also used to determine the 
number of optimal component and r2cv. value (or q2) was 
represented predictability from the analytical results. The 

2predictive maximum q value and the number of components 
from the result containing minimum error were selected as 
optimum number. Cross-validation used leave-one-out (LOO) 
method,30 which is, excluded compounds from data set by 
ones. Based on this, correlation coefficient (r2ncv.) was calculated 
by the non-cross-validation process (scaling: CoMFA standard, 
column filtering: 2.0 kcal/mol). When correlation coefficient 
(r2ncv.) was more than 0.90 and predictability (r2cv. or q2) value 
was more than 0.50, it is possible to estimate the model has 
predictability. The component number from the result was 
used for no-validation and 3D-QSAR model. Also, PRESS 
(predictive residual sum of the square of the training set) 
values were calculated by the sum of square deviation between 
observed values (。旅.pk。)of training set and predicted values 
(Pred.pk。).

Results and Discussion

3D-QSAR Models. Observed protox inhibition activity 
(。旅.pko) of substrate analogues (Fig. 1) has the highest 
inhibition activity (Obs. pko = 6.98) for compound 29 (Ri = 2- 
chloroally and R2 = 4-methoxythiophenyl group). On the 
other hand, it has the lowest inhibition activity (Obs.pI50 = 
4.66) for compound 20 (Ri = 2-chloroally and R2 = ethylthio 
group). According to the change of the substitution group of 
substrate analogues, CoMFA model and CoMSIA model 
(Table 1) were calculated from AF and FF alignment. 
Statistical values of 3D-QSAR models were generated 
according to the combination condition of range of grid (1.0 〜 

3.0 A), CoMFA field and CoMSIA field as summarized in 
Table 2. In CoMFA models, CoMFA 1 model (r2cv. = 0.414 and 
r2ncv. = 0.909) from AF alignment condition combined stan
dard field, indicator field and H-bond field was more satis
factory than CoMFA 2 model (r2cv. = 0.440 and r2ncv. = 0.787) 
from FF alignment condition. However, the two models were 
not appropriate because both models could not come to the 
standard of predictive level (r2cv. or q2 > 0.5).

In CoMSIA models, CoMSIA 2 model (r2cv = 0.612 and 
r2ncv. = 0.973) from FF alignment condition was the more 
appropriate model with higher correlation than CoMSIA 1

Figure 1. General structure and numbering scheme of 2-N-phenyl- 
isoindolin-1-one analogues (R1 〜R?).

Figure 2. Alignment of the potential energy minimized substrate 
structures according to a least-squares atom based fit.

Figure 3. Variation of q2 upon changing the attenuation factor, a 
used in the distance dependence between probe atoms and atoms in 
the molecule with CoMSIA models. (The number on top of the 
point indicates the optimum number of components).

model (r2cv. = 0.618 and r2ncv= 0.960) from AF alignment 
condition. Therefore, these two models, CoMSIA 1 and 2 
models were definitely better models than CoMFA 1 and 2 
models statistically. Especially, both CoMSIA 1 and 2 mod
els were appropriate models similarly. The optimized CoMSIA 
2 model was the optimized model with a high correlationship 
among four 3D-QSAR models. Observed inhibition activity 
(Obs.pko) of substrate analogues and predicted inhibition ac
tivity (Pred.pko) by CoMSIA 1 and 2 models, and deviation 
(Dev.) of these two values were summarized in Table 1. The
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Table 1. Observed inhibition activity (Obs.pLo) against protox and predicted inhibition activity (Pred.pLo) by the optimized CoMSIA models 
using two alignments

No.-
Substituents

Obs.p【50
AF FF a

R1 R2 Pred.b Dev.c Pred.b Dev.c
1 -CH2CCH (CH3)CHS- 5.07 5.04 0.03 4.98 0.09
2 -CH2CCH (CH3)3CS- 5.49 5.39 0.01 5.49 -0.09
3 -CH2CCH CH2CHCH2S- 5.74 5.73 0.01 5.71 0.03
4 -CH2CCH CH2 (CH2)2CH2S- 5.95 6.02 -0.07 6.08 -0.13
5 -CH2CCH CH2 (CH2)6CH2S- 6.01 6.07 -0.06 6.19 -0.18
6 -CH2CCH C6H10S- 5.65 5.71 -0.06 5.69 -0.04
7 -CH2CCH Ph.S- 5.79 6.12 -0.33 5.96 -0.17
9 -CH2CCH 2-CH3-Ph.S- 5.93 6.11 -0.18 5.97 -0.04
10 -CH2CCH 3-CH3-Ph.S- 6.69 6.93 -0.24 6.94 -0.25
11 -CH2CCH 2-Cl-Ph.S- 5.80 5.79 0.01 5.79 0.01
13 -CH2CCH 4-Cl-Ph.S- 6.75 6.35 0.40 6.66 0.09
15 -CH2CCH 4-F-Ph.S- 5.44 5.46 -0.02 5.38 0.06
16 -CH2CCH 3-F-Ph.S- 6.28 6.17 0.11 6.25 0.03
17 -CH2CCH 3-CF3-Ph.S- 5.83 5.91 -0.08 5.83 0.00
18 -CH2CCH 4-CF3-Ph.S- 6.78 6.94 -0.16 6.86 -0.08
19 -CH2CClCH2 OH- 5.70 5.73 -0.03 5.60 0.10
20 -CH2CClCH2 CH3CH2S- 4.66 4.34 0.32 4.50 0.16
21 -CH2CClCH2 (CH3)2CHS- 4.91 4.73 0.18 4.91 0.00
23 -CH2CClCH2 CH2CHCH2S- 3.96 4.44 -0.48 4.18 -0.22
24 -CH2CClCH2 CH3(CH2)4CH2S 6.75 6.59 0.16 6.61 0.14
25 -CH2CClCH2 CH3(CH2)6CH2S 6.78 6.75 0.03 6.79 -0.01
26 -CH2CClCH2 C6H10S- 5.78 5.96 -0.18 5.81 -0.03
27 -CH2CClCH2 2-CH3O-Ph.S- 6.75 6.70 0.05 6.70 0.05
29 -CH2CClCH2 4-CH3O-Ph.S- 6.98 6.92 0.06 6.91 0.07
30 -CH2CClCH2 2-CH3-Ph.S- 6.07 6.12 -0.05 5.89 0.18
31 -CH2CClCH2 3-CH3-Ph.S- 6.88 6.94 -0.06 6.83 0.05
32 -CH2CClCH2 2-Cl-Ph.S- 6.68 6.43 0.25 6.61 0.07
33 -CH2CClCH2 3-Cl-Ph.S- 6.21 6.00 0.21 6.05 0.16
34 -CH2CClCH2 4-Cl-Ph.S- 6.74 6.40 0.34 6.60 0.14
35 -CH2CClCH2 2-F-Ph.S- 6.74 6.73 0.01 6.78 -0.04
36 -CH2CClCH2 3-F-Ph.S- 5.91 6.18 -0.27 6.17 -0.26

Notes: AF: atom based fit; FF: field fit; "optimized model, 'predicted value by the CoMSIA 1 & 2 model; c difference between observed (Obs.pM。)values 
and predicted (Pred.plso) values.

Table 2. Summary of statistical parameters of 3D-QSAR models with two alignments

Model No. Alignments
PLS Analyses

Grid (A) NCa r2cvb 『nc/ SEncv" F
CoMFA 1 AF 1.0 2 0.414 0.909 0.246 39.746
CoMFA 2 FF 1.5 3 0.440 0.787 0.353 33.314
CoMSIA 1 AF (a = 0.4) 1.0 6 0.618 0.960 0.163 95.247
CoMSIA 2e FF (a = 0.7) 1.0 6 0.612 0.973 0.135 141.704

Notes: F: fraction of explained versus unexplained variance; attenuation factor: a; "number of components; 'cross-validated r2; cnon-cross- validated r2; 
dstandard error estimate, eoptimized model.

Table 3. Summary of field contribution and PLS results of 3D-QSAR model

Model No.
Field contribution (%) Training set Test set

PRESS Ave. PRESS Ave.S Hy E HA
CoMFA 1 76.9 6.60 16.5 - 5.962 0.331 3.547 0.737
CoMFA 2 62.6 24.8 12.6 - 3.327 0.243 3.307 0.697
CoMSIA 1 24.5 27.4 25.8 22.3 1.149 0.145 4.469 0.707
CoMSIA 2a 24.6 23.4 31.0 21.0 0.446 0.096 3.065 0.543

Notes: S: steric field; E: electrostatic field; Hy: hydrophobic field; HA: H-bond acceptor field; "optimized model.
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Table 4. Observed protox inhibition activity (。舞.pko) and predicted protox inhibition activity (Pred.pL。) by the optimized CoMSIA models 
for the test set

No.
Substituents

-。舞.pI50
AF FF

R1 R2 Pred.a Dev." Pred.a Dev."
8 -CH2CCH 2-CH3OPh.S- 6.27 5.48 0.79 5.85 0.42
12 -CH2CCH 3-Cl-Ph.S- 5.70 5.78 -0.08 5.66 0.04
14 -CH2CCH 2-F-Ph.S- 5.05 5.49 -0.44 5.74 -0.69
22 -CH2CClCH2 (CH3)3CS- 6.06 4.60 1.46 4.66 1.40
28 -CH2CClCH2 3-CH3O-Ph.S- 5.76 6.96 -1.20 6.43 -0.56
37 -CH2CClCH2 3-CF3Ph.S- 5.87 6.14 -0.27 5.91 -0.04

aThe values were calculated according to the optimized CoMSIA 1 and 2 models in Table 3; "difference between observes activity (O旅.pI50) and 
predicted activity (Pred. p【50).

optimized CoMSIA 2 model was combined with steric field, 
hydrophobic field, electrostatic field and H-bond accept 
field. From attenuation factor (a = 0.7) related to the distance 
between probe atom and atoms in substrate molecule, 
cross-validated q2 (or r2cv. = 0.62) value (Fig. 3) was the high
est and most optimal component number was 6 in grid 1.0 (A).

The contribution ratio (%) of distinction fields in 3D- 
QSAR models, average residual (Ave.) and redictive residual 
sum of squares (PRESS) of training set (Table 1) and test set 
compounds (Table 4) were summarized in Table 3. The Ave. 
and PRESS values of training set and test set with the 
optimized CoMSIA 2 model were the lowest. From the 
results, we could understand that CoMSIA 2 model is the 
most optimized model in all models. The contribution ratio 
(%) of electrostatic field, steric field, hydrophobicity field and 
H-bond acceptor field in CoMSIA 2 model was 31.0, 24.6, 
23.4 and 21.0%, respectively. Electrostatic field of substrate 
molecule was greatly contributed to protox inhibition activity. 
Based on these results, the proportional relationships between 
observed activities (OAs.pk。)related to protox inhibition 
activity and calculated activities (Pred.pk。)by the optimized 
CoMSIA 2 model were shown in Figure 4. It was expected the 
statistically appropriate predictibility from this linear

Obs.pl50

Figure 4. Relationships between observed protox inhibition activities 
(。舞中项)and predicted protox inhibition activities (Pred.pko) by 
the optimized CoMSIA model (Field fit) (For training set: 
Pred.pI50 = 0.973。舞.pI50 + 0.163, n = 31, s = 0.122, F = 1014.78, 
r2 = 0.972 & q2 = 0.970). 

equation (Pred.pk。= 0.973O庭.p【50 + 0.163, n = 31, s = 0.122, 
F = 1014.78, r2 = 0.972 and q2 = 0.970).

An지yses of CoMSIA Contour Maps. The contour maps of 
the optimized CoMSIA 2 model were represented in Figure 5 
and Figure 6. And the most active compound 29 (R1 = 2- 
chloroally and R2 = 4-methoxythiophenyl) is shown in capped 
sticks. The contour maps in the steric field and the H-bond 
donor field were represented in Figure 5. The yellow poly
hedral regions appeared around R2-substituent and its inhi
bition activity was decreased by bulky substituent sterically. 
Also, in S-atom region of R2-substituents (RS), inhibition

Figure 5. The contour maps of the CoMSIA 2 model for steric field 
activity (left side) and H-bond accept field (right side) (stdev* 
coeff). The most active compound (29) is shown in capped sticks.

Figure 6. The contour maps of the CoMSIA 2 model for electro
static field (left side) and hydrophobic field (right side) (stdev* 
coeff). The most active compound (29) is shown in capped sticks.
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activity was implied increase by the substituent (purple color) 
favored H-bond acceptor field. The contour maps in the 
electrostatic field and the hydrophobic field were represented 
in Figure 6. According to the results of the contour maps in the 
electrostatic field, the blue polyhedra favored positive charge 
were strongly expressed in two positions: where in combi
nation of R2-substituent and its template, where in C2, C3 and 
C5 carbon atoms of phenyl ring. The inhibition activity was 
presumed increase by the positive charge substituent in the 
blue polyhedra and by negative charge substituent (red color 
polyhedra) in C6 carbon atom. According to the results of the 
contour maps in the hydrophobic field on the right side, the 
protox inhibition activity was predicted increase by not only 
the hydrophobic substituent (silver polyhedral region) in C1 

atom of S-phenyl ring and C5 of carbon atom but also the 
hydrophilic substituent (cyan polyhedral region) in C4 carbon 
atom of S-phenyl ring. From the analyses results of these 
optimized CoMSIA 2 model, the structural distinctions that 
contribute to the herbicidal activity with inhibition of protox 
were obtained.

Conclusion

The CoMSIA 2 model is the most optimized (r2cv. = 0.612 & 
r2ncv. = 0.973) model among four 3D-QSAR models from two 
alignment conditions (AF and FF) to explain the protox inhi
bition activity of herbicidal substrate molecules. According to 
the distinction field, the protox inhibition activities depend on 
the electrostatic field (31.0%). From the contour maps, when 
steric factor is small in R2-substituent position, inhibition 
activity is increased. The substituent preferred to the positive 
charge at C2, C3 and C5 carbon atom in phenyl ring, and the 
substituent preferred to the negative charge at C6 carbon atom 
making inhibition activity increase. Also the protox inhibition 
activity was predicted increase by not only the hydrophobic 
substituent at C1 and C3 carbon atom of R2-substituent in 
S-phenyl ring but also the hydrophilic substituent at Cl atom 
position of Ri-substituent, C4 carbon atom and in the end of 
R1-substituent.
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