DOI QR코드

DOI QR Code

CO Adsorption on Mo(110) Studied Using Thermal Desorption Spectroscopy (TDS) and Ultraviolet Photoelectron Spectroscopy (UPS)

  • Published : 2009.06.20

Abstract

This study examined the adsorption of CO on a Mo(110) surface by Thermal Desorption Spectroscopy (TDS) and synchrotron-radiation based photoemission spectroscopy (SRPES). CO desorption was observed at approximately 400 K ($\alpha$-CO) and > 900 K ($\beta$-CO). When CO was exposed to Mo(110) at 100 K, it showed a tilted structure at low CO coverage and a vertical structure after saturation of the tilted CO. After heating the CO-precovered sample to 900 K, a broad peak at 12 eV below the Fermi level was identified in the valence level spectra, which was assigned to either the 4$\sigma$-molecular orbital of CO, or 2s of dissociated carbon. TDS results of the $\beta$-CO showed a first order desorption. These results are in a good agreement with the observations of CO adsorption on W(110) surfaces.

Keywords

References

  1. Masel, R. I. Principles of Adsorption and Reaction on Solid Surfaces; John Wiley & Sons, Inc.: New York, 1996.
  2. Handbook of Heterogeneous Catalysis; Ertl, G.; Knoezinger, H.; Schueth, F.; Weitkamp, J., Eds.; Wiley VCH Verlag GmbH & Co.: Weinheim, 2008.
  3. Yates, Jr., J. T. Surf. Sci. 1994, 299, 731-741. https://doi.org/10.1016/0039-6028(94)90693-9
  4. Campuzano, J. C. The Adsorption of Carbon Monoxide by Transition Metals; The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis; King D. A.; Woodruff, D. P., Eds.; Elservier: Amsterdam, 1990; Vol. 3, Part A3.
  5. Young, D. L.; Gomer, R. Surf. Sci. 1974, 44, 277-280. https://doi.org/10.1016/0039-6028(74)90111-3
  6. Viswanath, Y.; Schmidt, L. D. J. Chem. Phys. 1973, 59, 4184-4191. https://doi.org/10.1063/1.1680611
  7. Anders, L. W.; Hansen, R. S. J. Chem. Phys. 1975, 62, 4652-4660. https://doi.org/10.1063/1.430439
  8. Yates, Jr., J. T.; King, D. A. Surf. Sci. 1972, 30, 601-616. https://doi.org/10.1016/0039-6028(72)90049-0
  9. Yates, Jr., J. T.; King, D. A. Surf. Sci. 1972, 32, 479-505. https://doi.org/10.1016/0039-6028(72)90177-X
  10. Viswanath, Y.; Schmidt, L. D. J. Chem. Phys. 1973, 59, 4184-4191. https://doi.org/10.1063/1.1680611
  11. Houston, J. E.; Madey, T. E. Phys. Rev. B 1982, 26, 554-566. https://doi.org/10.1103/PhysRevB.26.554
  12. Leung, C.; Vass, M.; Gomer, R. Surf. Sci. 1977, 66, 67-100. https://doi.org/10.1016/0039-6028(77)90401-0
  13. King, D. A.; Goymour, C. G.; Yates, Jr., J. T. Proc. R. Soc. Lond. A 1972, 331, 361-376. https://doi.org/10.1098/rspa.1972.0183
  14. Steinbruchel, Ch.; Gomer, R. Surf. Sci. 1977, 67, 21-44. https://doi.org/10.1016/0039-6028(77)90368-5
  15. Yates, Jr., J. T.; Madey, T. E.; Erickson, N. E. Surf. Sci. 1974, 43, 257-274. https://doi.org/10.1016/0039-6028(74)90230-1
  16. Guillot, G.; Riwan, R.; Lecante, J. Surf. Sci. 1976, 59, 581-592. https://doi.org/10.1016/0039-6028(76)90037-6
  17. Semancik, S. P.; Estrup, J. Surf. Sci. 1981, 104, 26-28. https://doi.org/10.1016/0039-6028(81)90121-7
  18. Atkinson, J.; Brundle, C. R.; Roberts, M. W. Faraday Discuss. Chem. Soc. 1974, 58, 62-79. https://doi.org/10.1039/dc9745800062
  19. Umbach, E.; Fuggle, J. C.; Menzel, D. J. Electron Spec. and Rel. Phenom. 1977, 10, 15-34. https://doi.org/10.1016/0368-2048(77)85002-0
  20. Umbach, E.; Menzel, D. Surf. Sci. 1983, 135, 199-224. https://doi.org/10.1016/0039-6028(83)90219-4
  21. Houston, J. E. Surf. Sci. 1991, 255, 303-308. https://doi.org/10.1016/0039-6028(91)90687-N
  22. Froitzheim, H.; Ibach, H.; Lehwald, S. Surf. Sci. 1977, 63, 56-66. https://doi.org/10.1016/0039-6028(77)90326-0
  23. Yang, T.-S.: Jee, H.-G.; Boo, J.-H.; Han, H. S.; Lee, G. H.; Kim, Y. D.; Lee, S.-B. Bull. Kor. Chem. Soc. 2008, 29, 1115-1120. https://doi.org/10.5012/bkcs.2008.29.6.1115
  24. Kim, Y. D.; Boo, J.-H.; Lee, S.-B. Surf. Sci. 2009 doi : 10.1016/ j.Susc.200809.053.
  25. Christmann, K. Introduction to Surface Physical Chemistry; Steinkopff Verlag: Darmstadt,1991.
  26. Eastman, D. E.; Cashion, K. Phys. Rev. Lett. 1971, 27, 1520-1523. https://doi.org/10.1103/PhysRevLett.27.1520
  27. Fuggle, J. C.; Steinkilberg, M.; Menzel, D. Chem. Phys. 1975, 11, 307-317. https://doi.org/10.1016/0301-0104(75)80011-5
  28. Allyn, C. L.; Gustafsson, T.; Plummer, E. W. Sold State Commu. 1977, 24, 531-534. https://doi.org/10.1016/0038-1098(77)90156-9
  29. Davenport, J. W. Phys. Rev. Lett. 1976, 36, 945-949. https://doi.org/10.1103/PhysRevLett.36.945
  30. Smith, R. J.; Anderson, J. A.; Lepeyre, G. J. Phys. Rev. Lett. 1976, 37, 1081-1084. https://doi.org/10.1103/PhysRevLett.37.1081
  31. Shinn, N. D.; Madey, T. E. Phys. Rev. B 1986, 33, 1464-1467. https://doi.org/10.1103/PhysRevB.33.1464
  32. Shinn, N. D. Phys. Rev. B 1988, 38, 12248-12258. https://doi.org/10.1103/PhysRevB.38.12248
  33. Mehandru, S. P.; Anderson, A. P. Surf. Sci. 1988, 201, 345-360. https://doi.org/10.1016/0039-6028(88)90617-6
  34. Choe, S. J.; Kang, H. J.; Park, D. H.; Huh, D. S.; Lee, S.-B. Bull. Kor. Chem. Soc. 2004, 25, 1314-1320. https://doi.org/10.5012/bkcs.2004.25.9.1314
  35. Jaworowski, A. J.; Smedh, M.; Borg, M.; Sandell, A.; Beutler, A.; Sorensen, S. L.; Lundgren, E.; Andersen, J. N. Surf. Sci. 2001, 492, 185-194. https://doi.org/10.1016/S0039-6028(01)01447-9