References
- Pecoraro, V. L.; Stemmler, A. J.; Gibeny, B. R.; Bodwin, J. J.; Wang, H.; Kampf, J. W.; Barwinski, A. Progress in Inorganic Chemistry; Wiley: New York, 1997; Vol. 45, p 83.
- Lah, M. S.; Pecoraro, V. L. J. Am. Chem. Soc. 1989, 111, 7258. https://doi.org/10.1021/ja00200a054
- Lah, M. S.; Kirk, M. L.; Hatfield, W.; Pecoraro, V. L. J. Chem. Soc. Chem. Commun. 1989, 1606.
- Liu, S. X.; Lin, S.; Lin, B. Z.; Lin, C. C.; Huang, J. Q. Angew. Chem. Int. Ed. 2001, 40, 1084. https://doi.org/10.1002/1521-3773(20010316)40:6<1084::AID-ANIE10840>3.0.CO;2-U
- Kruger, T.; Krebs, B.; Henkel, G. Angew. Chem. Int. Ed. 1989, 28, 61. https://doi.org/10.1002/anie.198900611
- Fenske, D.; Fischer, A. Angew. Chem. Int. Ed. 1995, 34, 307. https://doi.org/10.1002/anie.199503071
- Caneschi, A.; Cornia, A.; Lippard, S. J. Angew. Chem. Int. Ed. 1995, 34, 467. https://doi.org/10.1002/anie.199504671
- Woodward, P.; Dahl, L. F.; Abel, E. W.; Crosse, B. C. J. Am. Chem. Soc. 1965, 87, 5251. https://doi.org/10.1021/ja00950a049
- Jian, F. F.; Jiao, K.; Li, Y.; Zhao, P. S.; Lu, L. D. Angew. Chem. Int. Ed. 2003, 46, 5722.
- Wark, T. A.; Stephan, D. W. Organometallics 1989, 8, 2836. https://doi.org/10.1021/om00114a017
- Mahmoudkhani, A. H.; Langer, V. polyhedron 1999, 18, 3407. https://doi.org/10.1016/S0277-5387(99)00245-4
- Barrera, H.; Bayon, J. C.; Suades, J.; Germain, C.; Deelerq, J. P. polyhedron 1984, 3, 969. https://doi.org/10.1016/S0277-5387(00)84654-9
- Gould, R. O.; Harding, M. M. J. Chem. Soc. A 1970, 875. https://doi.org/10.1039/j19700000875
- Koo, B. K.; Block, E.; Kang, H.; Liu, S.; Zubieta, J. polyhedron 1988, 7, 1397. https://doi.org/10.1016/S0277-5387(00)80392-7
- Gaete, W.; Ros, T.; Solans, X.; Font-Atltaba, M.; Brianso, J. L. Inorg. Chem. 1984, 23, 39. https://doi.org/10.1021/ic00169a010
- Kriege, M.; Henkel, G. Z. Naturforsch B 1987, 42, 1121.
- Dance, I. G.; Scudder, M. L.; Secomb, R. Inorg. Chem. 1985, 24, 1201. https://doi.org/10.1021/ic00202a018
- Ivanov, S. A.; Kozee, M. A.; Merrill, W. A.; Agarwal, S.; Dahl, L. F. J. Chem. Soc. Dalton. Trans. 2002, 4105.
- Feld, H.; Leute, A.; Rading, D.; Benninghoven, A.; Henkel, G.; Kruger, T.; Krebs, K. Z. Naturforsch Teil. B 1992, 47, 929.
- Ferrari, M. B.; Capacchi, S.; Bisceglie, F.; Pelosi, G.; Tarasconi, P. Inorg. Chim. Acta 2001, 312, 81. https://doi.org/10.1016/S0020-1693(00)00339-X
- Donohue, H. The Structures of the Elements; Wiley: New York, 1974; p 213.
- Baranov, A. I.; Kloo, L.; Olenev, A. V.; Popovkin, B. A.; Romanenko, A. I.; Shevelkov, A. V. J. Am. Chem. Soc. 2001, 123, 12375. https://doi.org/10.1021/ja0167001
- Fenske, D.; Hollnagel, A. Angew. Chem. Int. Ed. Eng. 1989, 28, 1390. https://doi.org/10.1002/anie.198913901
Cited by
- Production vol.133, pp.51, 2011, https://doi.org/10.1021/ja208555h
- Synthesis and Structures of Cuprous Triptycylthiolate Complexes vol.51, pp.12, 2012, https://doi.org/10.1021/ic300124n
- Photocatalytic Hydrogen Generation System Using a Nickel-Thiolate Hexameric Cluster vol.52, pp.15, 2013, https://doi.org/10.1021/ic4013069
- Reduction-resistant and reduction-catalytic double-crown nickel nanoclusters vol.6, pp.23, 2014, https://doi.org/10.1039/C4NR04981K
- Penta and hexanuclear nickel tiara-like clusters with two different thiolate bridges vol.17, pp.27, 2015, https://doi.org/10.1039/C5CE00863H
- Electrocatalytic Oxygen Evolution with an Atomically Precise Nickel Catalyst vol.6, pp.2, 2016, https://doi.org/10.1021/acscatal.5b02633