DOI QR코드

DOI QR Code

Synthesis and Structure Analysis of α and β Forms of [12] Metallacrown-6 Nickel(II) Complex: [Ni6(SCH2CH2CH3)12]

  • Xiao, Hai Lian (College of Materials Science and Engineering, Qingdao University of Science and Technology) ;
  • Jian, Fang Fang (New Materials & Function Coordination Chemistry Laboratory, Qingdao University of Science and Technology) ;
  • Zhang, Ke Jie (Nanjing University of Science and Technology)
  • Published : 2009.04.20

Abstract

Two modifications of the ${\alpha}\;and\;{\beta}$ forms of propyl mercaptan nickel(II) cluster, [$Ni_6(SCH_2CH_2CH_3)_{12}$], have been synthesized and their crystal structures have been determined by single-crystal X-ray diffraction. The alkyl groups are away from $Ni_6$ ring in $\alpha$ form whereas they are near to the Ni atom in $\beta$ form. The distance of Ni-H in $\beta$ form [2.576(5) $\AA$] is much shorter than that in $\alpha$ form [3.101(2) $\AA$]. In the crystal lattice of $\beta$ form, the whole structure forms a flower shape.

Keywords

References

  1. Pecoraro, V. L.; Stemmler, A. J.; Gibeny, B. R.; Bodwin, J. J.; Wang, H.; Kampf, J. W.; Barwinski, A. Progress in Inorganic Chemistry; Wiley: New York, 1997; Vol. 45, p 83.
  2. Lah, M. S.; Pecoraro, V. L. J. Am. Chem. Soc. 1989, 111, 7258. https://doi.org/10.1021/ja00200a054
  3. Lah, M. S.; Kirk, M. L.; Hatfield, W.; Pecoraro, V. L. J. Chem. Soc. Chem. Commun. 1989, 1606.
  4. Liu, S. X.; Lin, S.; Lin, B. Z.; Lin, C. C.; Huang, J. Q. Angew. Chem. Int. Ed. 2001, 40, 1084. https://doi.org/10.1002/1521-3773(20010316)40:6<1084::AID-ANIE10840>3.0.CO;2-U
  5. Kruger, T.; Krebs, B.; Henkel, G. Angew. Chem. Int. Ed. 1989, 28, 61. https://doi.org/10.1002/anie.198900611
  6. Fenske, D.; Fischer, A. Angew. Chem. Int. Ed. 1995, 34, 307. https://doi.org/10.1002/anie.199503071
  7. Caneschi, A.; Cornia, A.; Lippard, S. J. Angew. Chem. Int. Ed. 1995, 34, 467. https://doi.org/10.1002/anie.199504671
  8. Woodward, P.; Dahl, L. F.; Abel, E. W.; Crosse, B. C. J. Am. Chem. Soc. 1965, 87, 5251. https://doi.org/10.1021/ja00950a049
  9. Jian, F. F.; Jiao, K.; Li, Y.; Zhao, P. S.; Lu, L. D. Angew. Chem. Int. Ed. 2003, 46, 5722.
  10. Wark, T. A.; Stephan, D. W. Organometallics 1989, 8, 2836. https://doi.org/10.1021/om00114a017
  11. Mahmoudkhani, A. H.; Langer, V. polyhedron 1999, 18, 3407. https://doi.org/10.1016/S0277-5387(99)00245-4
  12. Barrera, H.; Bayon, J. C.; Suades, J.; Germain, C.; Deelerq, J. P. polyhedron 1984, 3, 969. https://doi.org/10.1016/S0277-5387(00)84654-9
  13. Gould, R. O.; Harding, M. M. J. Chem. Soc. A 1970, 875. https://doi.org/10.1039/j19700000875
  14. Koo, B. K.; Block, E.; Kang, H.; Liu, S.; Zubieta, J. polyhedron 1988, 7, 1397. https://doi.org/10.1016/S0277-5387(00)80392-7
  15. Gaete, W.; Ros, T.; Solans, X.; Font-Atltaba, M.; Brianso, J. L. Inorg. Chem. 1984, 23, 39. https://doi.org/10.1021/ic00169a010
  16. Kriege, M.; Henkel, G. Z. Naturforsch B 1987, 42, 1121.
  17. Dance, I. G.; Scudder, M. L.; Secomb, R. Inorg. Chem. 1985, 24, 1201. https://doi.org/10.1021/ic00202a018
  18. Ivanov, S. A.; Kozee, M. A.; Merrill, W. A.; Agarwal, S.; Dahl, L. F. J. Chem. Soc. Dalton. Trans. 2002, 4105.
  19. Feld, H.; Leute, A.; Rading, D.; Benninghoven, A.; Henkel, G.; Kruger, T.; Krebs, K. Z. Naturforsch Teil. B 1992, 47, 929.
  20. Ferrari, M. B.; Capacchi, S.; Bisceglie, F.; Pelosi, G.; Tarasconi, P. Inorg. Chim. Acta 2001, 312, 81. https://doi.org/10.1016/S0020-1693(00)00339-X
  21. Donohue, H. The Structures of the Elements; Wiley: New York, 1974; p 213.
  22. Baranov, A. I.; Kloo, L.; Olenev, A. V.; Popovkin, B. A.; Romanenko, A. I.; Shevelkov, A. V. J. Am. Chem. Soc. 2001, 123, 12375. https://doi.org/10.1021/ja0167001
  23. Fenske, D.; Hollnagel, A. Angew. Chem. Int. Ed. Eng. 1989, 28, 1390. https://doi.org/10.1002/anie.198913901

Cited by

  1. Production vol.133, pp.51, 2011, https://doi.org/10.1021/ja208555h
  2. Synthesis and Structures of Cuprous Triptycylthiolate Complexes vol.51, pp.12, 2012, https://doi.org/10.1021/ic300124n
  3. Photocatalytic Hydrogen Generation System Using a Nickel-Thiolate Hexameric Cluster vol.52, pp.15, 2013, https://doi.org/10.1021/ic4013069
  4. Reduction-resistant and reduction-catalytic double-crown nickel nanoclusters vol.6, pp.23, 2014, https://doi.org/10.1039/C4NR04981K
  5. Penta and hexanuclear nickel tiara-like clusters with two different thiolate bridges vol.17, pp.27, 2015, https://doi.org/10.1039/C5CE00863H
  6. Electrocatalytic Oxygen Evolution with an Atomically Precise Nickel Catalyst vol.6, pp.2, 2016, https://doi.org/10.1021/acscatal.5b02633