DOI QR코드

DOI QR Code

DFT Conformational Study of Calix[6]arene: Hydrogen Bond

  • Published : 2009.04.20

Abstract

We have performed DFT calculations to investigate the conformational characteristics and hydrogen bonds of the calix[6]arene (1) and p-tert-butylcalix[6]arene (2). The structures of various conformers of 1 were optimized by using the B3LYP/6-31G(d,p) and /6-31+G(d,p) methods followed by single point calculation of MPW1PW91/ 6-31G(d,p). The relative stability of the conformers of 1 is in the following order: cone (pinched: most stable) > partial-cone > cone (winged) $\sim$ 1,2-alternate $\sim$ 1,2,3-alternate > 1,4-alternate > 1,3-alternate > 1,3,5-alternate. The structures of different conformers of 2 were optimized by using the B3LYP/6-31G(d,p) method followed by single point calculation of MPW1PW91/6-31G(d,p). The relative stability of the conformers of 2 is in the following order: cone (pinched) > 1,2-alternate > cone (winged) > 1,4-alternate $\sim$ partial-cone > 1,2,3-alternate > 1,3,5alternate > 1,3-alternate. One of the important factors affecting the relative stabilities of the various conformers of the 1 and 2 is the number and strength of the intramolecular hydrogen bonds.

Keywords

References

  1. Calixarenes in Action; Mandolini, L.; Ungaro, R., Eds.; World Scientific Publishers Co.: Singapore, 2007.
  2. Gutsche, C. D. Calixarenes Revisited; Royal Society of Chemistry: Cambridge, 1998.
  3. Calixarenes $50^{th}$ Anniversary: Commemorative Volume; Vicens, J.; Asfari, Z.; Harrowfield, J. M., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1991.
  4. Gutsche, C. D. Calixarenes; Royal Society of Chemistry: Cambridge, 1989.
  5. Calixarenes: A Versatile Class of Macrocyclic Compounds; Vicens, J.; B$\ddot{o}$hmer, V., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1991.
  6. Kanamathareddy, S.; Gutsche, C. D. J. Org. Chem. 1994, 59, 3871. https://doi.org/10.1021/jo00093a019
  7. Otsuka, H.; Araki, K.; Shinkai, S. J. Org. Chem. 1994, 59, 1542. https://doi.org/10.1021/jo00085a048
  8. Neri, P.; Rocco, C.; Consoli, G. M. L.; Piattelli, M. J. Org. Chem. 1993, 58, 6535. https://doi.org/10.1021/jo00076a002
  9. Neri, P.; Foti, M.; Ferguson, G.; Gallagher, J. F.; Kaitner, B.; Pons, M.; Molins, M. A.; Giunta, L.; Pappalardo, S. J. Am. Chem. Soc. 1992, 114, 7814. https://doi.org/10.1021/ja00046a030
  10. Janssen, R. G.; Verboom, W.; Harkema, S.; van Hummel, G. J.; Reinhoudt, D. N.; Pochini, A.; Ungaro, R.; Prados, P.; de Mendoza, J. J. Chem. Soc., Chem. Commun. 1993, 506.
  11. Janssen, R. G.; van Duynhoven, J. P. M.; Verboom, W.; van Hummel, G. J.; Harkema, S.; Reinhoudt, D. N. J. Am. Chem. Soc. 1996, 118, 3666. https://doi.org/10.1021/ja9540942
  12. Janssen, R. G.; Verboom, W.; Reinhoudt, D. N.; Casnati, A.; Freriks, M.; Pochini, A.; Ugozolli, F.; Ungaro, R.; Nieto, P. M.; Carramolino, M.; Cuevas, F.; Prados, P.; de Mendoza, J. Synthesis 1993, 380.
  13. Moran, J. K.; Georgiev, E. M.; Yordanov, A. T.; Mague, J. T.; Roundhill, D.M. J. Org. Chem. 1994, 59, 5990. https://doi.org/10.1021/jo00099a032
  14. Gutsche, C. D.; Bauer, J. J. Am. Chem. Soc. 1985, 107, 6052. https://doi.org/10.1021/ja00307a038
  15. Lutz, B. T. G.; Astarloa, G.; van der Maas, J. H.; Janssen, R. G.; Verboom, W.; Reinhoudt, D. N. Vib. Spectrosc. 1995, 10, 29. https://doi.org/10.1016/0924-2031(95)00024-O
  16. van Hoorn, W. P.; van Veggel, F. C. J. M.; Reinhoudt, D. N. J. Org. Chem. 1996, 61, 7180. https://doi.org/10.1021/jo960865o
  17. Atwood, J. L.; Barbour, L. J.; Raston, C. L.; Sudria, I. B. N. Angew. Chem., Int. Ed. 1998, 37, 981. https://doi.org/10.1002/(SICI)1521-3773(19980420)37:7<981::AID-ANIE981>3.0.CO;2-X
  18. Andretti, G. D.; Ugozzoli, F.; Casnati, A.; Ghidini, E.; Pochini, A.; Ungaro, R. Gazz. Chim. Ital. 1989, 119, 47.
  19. Halit, M.; Oehler, D.; Perrin, M.; Thozet, A.; Perrin, R.; Vicens, J.; Bourakhoudar, M. J. Inclusion Phenom. 1988, 6, 613. https://doi.org/10.1007/BF00656343
  20. Molins, M. A.; Nieto, P. M.; Sanchez, C.; Prados, P.; de Mendoza, J.; Pons, M. J. Org. Chem. 1992, 57, 6924. https://doi.org/10.1021/jo00051a046
  21. Janssen, R. G.; van Duynhoven, J. P. M.; Verboom, W.; van Hummel, G. J.; Harkema, S.; Reinhoudt, D. N. J. Am. Chem. Soc. 1996, 118, 3666. https://doi.org/10.1021/ja9540942
  22. Kim, K.; Park, S. J.; Choe, J.-I. Bull. Korean Chem. Soc. 2008, 29, 1893. https://doi.org/10.5012/bkcs.2008.29.10.1893
  23. Kim, K.; Lee, S. H.; Choe, J.-I. Bull. Korean Chem. Soc. 2008, 29, 2152. https://doi.org/10.5012/bkcs.2008.29.11.2152
  24. Cambridge Structure Database; Cambridge Crystallographic Data Centre: Cambridge, U. K., 2008.
  25. Atwood, J. L.; Barbour, L. J.; Heaven, M. W.; Raston, C. L. Angew. Chem. 1998, 37, 981. https://doi.org/10.1002/(SICI)1521-3773(19980420)37:7<981::AID-ANIE981>3.0.CO;2-X
  26. Andretti, G. D.; Ugozzoli, F.; Casnati, A.; Ghidini, E.; Pochini, A.; Ungaro, R. Gazz. Chim. Ital. 1989, 119, 47.
  27. HyperChem Release 7.5; Hypercube, Inc.: Waterloo, Ontario, Canada, 2002.
  28. Choe, J.-I.; Kim, K.; Chang, S.-K. Bull. Korean Chem. Soc. 2000, 21, 465. https://doi.org/10.1007/BF02705436
  29. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  30. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  31. Lynch, B. J.; Fast, P. L.; Harris, M.; Truhlar, D. G. J. Phys. Chem. A 2000, 104, 4811. https://doi.org/10.1021/jp000497z
  32. Zhao, Y.; Tishchenko, O.; Truhlar, D. G. J. Phys. Chem. B 2005, 109, 19046. https://doi.org/10.1021/jp0534434
  33. Tsuzuki, S.; L$\ddot{u}$thi, H. P. J. Chem. Phys. 2001, 114, 3949. https://doi.org/10.1063/1.1344891
  34. Schreiner, P. R.; Fokin, A. A.; Pascal, R. A.; Meijere, A. Org. Lett. 2006, 8, 3635. https://doi.org/10.1021/ol0610486
  35. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision D.01; Gaussian, Inc.: Wallingford, CT, 2004.
  36. Jeffrey, G. A. An Introduction to Hydrogen Bonding; Oxford Univ. Press: Cambridge, 1997.
  37. Pak, C.; Lee, H. M.; Kim, J. C.; Kim, D.; Kim, K. S. Struct. Chem. 2005, 16, 187. https://doi.org/10.1007/s11224-005-4445-x
  38. Lee, S. J.; Chung, H. Y.; Kim, K. S. Bull. Korean Chem. Soc. 2004, 25, 1061. https://doi.org/10.5012/bkcs.2004.25.7.1061
  39. Chem3D, Version 7.0; Cambridge Soft: Cambridge, MA, U.S.A., 2001.

Cited by

  1. ]arenes: A Quantum-Chemical Approach vol.116, pp.1, 2012, https://doi.org/10.1021/jp207815k
  2. H-NMR) and Theoretical Approaches vol.83, pp.5, 2014, https://doi.org/10.1111/cbdd.12267
  3. Relay proton transfer triggered twisted intramolecular charge transfer vol.14, pp.12, 2015, https://doi.org/10.1039/C5PP00339C
  4. Influence of polyether chain on the non-covalent interactions and stability of the conformers of calix[4]crown ethers vol.91, pp.1-2, 2018, https://doi.org/10.1007/s10847-018-0801-5
  5. mPW1PW91 Calculated Conformational Study of Calix[n]arene (n = 4,5,6): Hydrogen Bond vol.53, pp.6, 2009, https://doi.org/10.5012/jkcs.2009.53.6.640
  6. A theoretical study of the conformational preference of alkyl- and aryl-substituted pyrogallol[4]arenes and evidence of the accumulation of negative electrostatic potential within the cavity of their vol.40, pp.4, 2009, https://doi.org/10.1080/08927022.2013.806806
  7. Winged-Cone Conformation in Hexa-p-tert-butylcalix[6]arene Driven by the Unusually Strong Guest Encapsulation vol.2, pp.8, 2009, https://doi.org/10.1021/acsomega.7b00900