DOI QR코드

DOI QR Code

Variation in IR and Raman Spectra of CD3CN upon Solvation of InCl3 in CD3CN: Distinctive Blue Shifts, Coordination Number, Donor-Acceptor Interaction, and Solvated Species

  • Published : 2009.04.20

Abstract

Notable blue shifts of the ν2 $C{\equiv}N$ stretching, $_{v4}$ C-C stretching and $_{v8}$ CCN deformation bands of $CD_3CN$ are observed upon solvation of $InCl_3$, resulting from the donor-acceptor interaction. The Raman spectrum in the $_{v2}$ region shows further details; at least two new bands emerge on the blue side of the $_{v2}$ band of free $CD_3CN$, whose relative intensities vary with concentration, suggesting that there exist at least two different cationic species in the solution. The strong hydrogen bonds formed between the methyl group and ${InCl_4}^-$ result in a large band appearing on the red side of the ν1 $CD_3$ symmetric stretching band. The solvation number of $InCl_3$, determined from the Raman intensities of the $C{\equiv}N$ stretching bands for free and coordinated $CD_3CN$, increases from $\sim$1.5 to $\sim$1.8 with decreasing concentration.

Keywords

References

  1. Jamros, D.; Wojcik, M.; Lindgren, J.; Stangret, J. J. Phys. Chem. B 1997, 101, 6758. https://doi.org/10.1021/jp9710998
  2. Jamros, D.; Wojcik, M.; Lindgren, J. Spectrochim. Acta A 2000, 56, 1939. https://doi.org/10.1016/S1386-1425(00)00258-4
  3. Nyquist, R. A. Appl. Spectrosc. 1990, 44, 1405. https://doi.org/10.1366/000370290789619649
  4. Dimitrova, Y. J. Mol. Struct. 1995, 343, 25. https://doi.org/10.1016/0166-1280(95)90517-0
  5. Saito, T.; Yamakawa, M.; Taksuka, M. J. Mol. Spectrosc. 1981, 90, 359. https://doi.org/10.1016/0022-2852(81)90133-8
  6. Bertie, J. E.; Lan, Z. J. Phys. Chem. B 1997, 101, 4111. https://doi.org/10.1021/jp9639511
  7. Hoskins, A. R.; Edwards, H. G. M.; Johnson, A. F. J. Mol. Struct. 1991, 263, 1. https://doi.org/10.1016/0022-2860(91)80050-E
  8. Gutmann, V.; Resch, G.; Linert, W. Coord. Chem. Rev. 1982, 43, 133. https://doi.org/10.1016/S0010-8545(00)82094-9
  9. Vijay, A.; Sathyanarayana, D. N. J. Phys. Chem. 1996, 100, 75. https://doi.org/10.1021/jp9431548
  10. Cho, H.-G.; Cheong, B.-S. J. Mol. Struct. (Theochem) 2000, 496, 185. https://doi.org/10.1016/S0166-1280(99)00183-9
  11. Fawcett, W. R.; Liu, G.; Faguy, P. W.; Foss, C. A., Jr.; Motheo, A. J. J. Chem. Soc. Faraday Trans. 1993, 89, 811. https://doi.org/10.1039/ft9938900811
  12. Fawcett, W. R.; Liu, G. J. Phys. Chem. 1992, 96, 4231. https://doi.org/10.1021/j100190a025
  13. Oliver, B. G.; Janz, G. J. J. Phys. Chem. 1970, 74, 3819. https://doi.org/10.1021/j100715a017
  14. Cha, J.-N.; Cheong, B.-S.; Cho, H.-G. J. Phys. Chem. A 2001, 105, 1789. https://doi.org/10.1021/jp003751w
  15. Seo, J.-S.; Cheong, B.-S.; Cho, H.-G. Spectrochim. Acta A 2002, 58, 1747. https://doi.org/10.1016/S1386-1425(01)00636-9
  16. Seo, J.-S.; Kim, K.-W.; Cho, H.-G. Spectrochim. Acta A 2003, 59, 477. https://doi.org/10.1016/S1386-1425(02)00190-7
  17. Cho, H.-G. Spectrochim. Acta A 2003, 59, 1517. https://doi.org/10.1016/S1386-1425(02)00356-6
  18. Fawcett, W. R.; Liu, G.; Kessler, T. E. J. Phys. Chem. 1993, 97, 9293. https://doi.org/10.1021/j100139a007
  19. B$\ddot{o}$ck, S.; N$\ddot{o}$th, H.; Wietelmann, A. Z. Naturforsch. 1990, 45B, 979.
  20. Greenwood, N. N.; Wade, K. J. Chem. Soc. 1958, 1663. https://doi.org/10.1039/jr9580001663
  21. Schmulbach, C. D.; Ahmed, I. Y. Inorg. Chem. 1971, 10, 1902. https://doi.org/10.1021/ic50103a013
  22. Ahmed, I. Y.; Schmulbach, C. D. Inorg. Chem. 1972, 11, 228. https://doi.org/10.1021/ic50108a003
  23. Atkinson, A. W.; Chardwick, J. R.; Kinsella, E. J. Inorg. Nucl. Chem. 1968, 30, 401. https://doi.org/10.1016/0022-1902(68)80466-X
  24. Dalibart, M.; Derouault, J.; Granger, P.; Chapelle, S. Inorg. Chem. 1982, 21, 1040. https://doi.org/10.1021/ic00133a034
  25. Beattie, I. R.; Jones, R. J.; Howard, J. A. K.; Smart, L. E.; Gilmore, C. J.; Akitt, J. W. J. Chem. Soc. Dalton 1979, 528.
  26. Woodward, L. A.; Nord, A. A. J. Chem. Soc. 1956, 3721. https://doi.org/10.1039/jr9560003721
  27. Cho, J.-S.; Cho, H.-G. J. Kor. Chem. Soc. 2007, 51, 287 https://doi.org/10.5012/jkcs.2007.51.3.287
  28. Clarke, J. H. R.; Hester, R. E. J. Chem. Phys. 1969, 50, 3106. https://doi.org/10.1063/1.1671513
  29. Jurgens, R.; Alml$\ddot{o}$f, J. Chem. Phys. Lett. 1991, 176, 263. https://doi.org/10.1016/0009-2614(91)90028-8
  30. Ablaeva, M. A.; Zsidomirov, G. M.; Pelmenshchikov, A. G.; Burgina, E. B.; Baltakhinov, V. P. React. Kinet. Catal. Lett. 1992, 48, 569. https://doi.org/10.1007/BF02162709
  31. Miller, J. M.; Onyszchuk, M. Can. J. Chem. 1966, 44, 899. https://doi.org/10.1139/v66-132
  32. Pews, R. G.; Tsuno, Y.; Taft, R. W. J. Am. Chem. Soc. 1967, 89, 2391. https://doi.org/10.1021/ja00986a026
  33. Huggins, C. M.; Pimental, G. C. J. Phys. Chem. 1956, 60, 1615. https://doi.org/10.1021/j150546a004
  34. Glew, D. N.; Rath, N. S. Can. J. Chem. 1971, 49, 837. https://doi.org/10.1139/v71-142
  35. Sadlej, J. Spectrochim. Acta A 1979, 35, 681. https://doi.org/10.1016/0584-8539(79)80129-4
  36. Freedman, T. B.; Nixon, E. R. Spectrochim. Acta A 1972, 28, 1375. https://doi.org/10.1016/0584-8539(72)80107-7
  37. Evans, J. C.; Lo, G. Y.-S. Spectrochim. Acta 1965, 21, 1033. https://doi.org/10.1016/0371-1951(65)80179-5
  38. Jones, D. E. H.; Wood, J. L. J. Chem. Soc. (A) 1971, 3135. https://doi.org/10.1039/j19710003135
  39. Balasubrahmanyam, K.; Janz, G. J. J. Am. Chem. Soc. 1970, 92, 4189. https://doi.org/10.1021/ja00717a009

Cited by

  1. as the Catalytic Species and Answering Why Nonconjugated Dienes Are Generated vol.77, pp.19, 2012, https://doi.org/10.1021/jo301471w
  2. Promoting Terminal Olefin Metathesis with a Supported Cationic Molybdenum Imido Alkylidene N-Heterocyclic Carbene Catalyst vol.130, pp.44, 2018, https://doi.org/10.1002/ange.201808233
  3. Promoting Terminal Olefin Metathesis with a Supported Cationic Molybdenum Imido Alkylidene N-Heterocyclic Carbene Catalyst vol.57, pp.44, 2018, https://doi.org/10.1002/anie.201808233
  4. 아세토니트릴 내에서의 Ag+ 이온의 배위수와 음이온 효과 vol.53, pp.5, 2009, https://doi.org/10.5012/jkcs.2009.53.5.609
  5. Alternative Electrolytes for Li-Ion Batteries Using Glutaronitrile and 2-methylglutaronitrile with Lithium Bis(trifluoromethanesulfonyl) Imide vol.166, pp.14, 2019, https://doi.org/10.1149/2.1261914jes
  6. The DFT Quest for Possible Reaction Pathways, Catalytic Species, and Regioselectivity in the InCl3-Catalyzed Cycloaddition of N-Tosyl Formaldimine with Olefins or Allenes vol.85, pp.5, 2009, https://doi.org/10.1021/acs.joc.9b03309
  7. Power of Infrared and Raman Spectroscopies to Characterize Metal-Organic Frameworks and Investigate Their Interaction with Guest Molecules vol.121, pp.3, 2021, https://doi.org/10.1021/acs.chemrev.0c00487
  8. Mechanism of Ferric Chloride Facilitating Efficient Lithium Extraction from Magnesium-Rich Brine with Tri-n-butyl Phosphate vol.60, pp.23, 2009, https://doi.org/10.1021/acs.iecr.1c01003
  9. On the Role of Dioxane in the Synthesis of In-Derived MOFs vol.21, pp.12, 2009, https://doi.org/10.1021/acs.cgd.1c00766