DOI QR코드

DOI QR Code

Adsorption Properties of Keggin-type Polyoxometalates on Carbon Based Electrode Surfaces and Their Electrocatalytic Activities

  • Choi, Su-Hee (Department of Chemistry, Chungbuk National University) ;
  • Kim, Jong-Won (Department of Chemistry, Chungbuk National University)
  • Published : 2009.04.20

Abstract

The interactions between four Keggin-type POMs (${SiW_{12}O_{40}}^{4-},\;{PW_{12}O_{40}}^{3-},\;{SiMo_{12}O_{40}}^{4-},\;and\;{PMo_{12}O_{40}}^{3-}$) and glassy carbon (GC) and highly oriented pyrolytic graphite (HOPG) surfaces are investigated in a systematic way. Electrochemical results show that molibdate series POMs adsorb relatively stronger than tungstate POMs on GC and HOPG surfaces. Adsorption of POMs on HOPG electrode surfaces is relatively stronger than on GC surfaces. ${SiMo_{12}O_{40}}^{4-}$ species exhibits unique adsorption behaviors on HOPG surfaces. Surface-confined ${SiMo_{12}O_{40}}^{4-}$ species on HOPG surfaces exhibit unique adsorption behaviors and inhibit the electron transfer from the solution phase species. The catalytic activity of the surface-confined POMs for hydrogen peroxide electroreduction is also examined, where ${PW_{12}O_{40}}^{3-}$ species adsorbed on GC surfaces exhibits the highest catalytic efficiency among the investigated POM modified electrode systems.

Keywords

References

  1. Pope, M. T. Heteropoly and Isopoly Oxometalates; Springer-Verlag: Berlin, 1983.
  2. Mizuno, N.; Misono, M. Chem. Rev. 1998, 98, 199. https://doi.org/10.1021/cr960401q
  3. Coronado, E.; Gomez-Garcia, C. J. Chem. Rev. 1998, 98, 273. https://doi.org/10.1021/cr970471c
  4. Keita, B.; Nadjo, L.; Belanger, D.; Wilde, C. P.; Hilaire, M. J. Electroanal. Chem. 1995, 384, 155. https://doi.org/10.1016/0022-0728(94)03703-6
  5. Rong, C. Y.; Anson, F. C. Inorg. Chim. Acta 1996, 242, 11. https://doi.org/10.1016/0020-1693(95)04843-X
  6. Martel, D.; Sojic, N.; Kuhn, A. J. Chem. Educ. 2002, 79, 349. https://doi.org/10.1021/ed079p349
  7. Ge, M. H.; Zhong, B. X.; Klemperer, W. G.; Gewirth, A. A. J. Am. Chem. Soc. 1996, 118, 5812. https://doi.org/10.1021/ja960498y
  8. Ge, M.; Niece, B. K.; Wall, C. G.; Klemperer, W. G.; Gewirth, A. A. Mater. Res. Soc. Symp. Proc. 1997, 451, 99.
  9. Lee, L.; Gewirth, A. A. J. Electroanal. Chem. 2002, 522, 11. https://doi.org/10.1016/S0022-0728(01)00742-2
  10. Fattakhova-Rohlfing, D.; Kuhn, A. Carbon 2006, 44, 1942. https://doi.org/10.1016/j.carbon.2006.02.024
  11. Pan, D. W.; Chen, J. H.; Tao, W. Y.; Nie, L. H.; Yao, S. Z. Langmuir 2006, 22, 5872. https://doi.org/10.1021/la053171w
  12. Jianying, Q.; Xiangqin, Z.; Baifeng, L.; Shaojun, D. Anal. Chim. Acta 2007, 599, 51. https://doi.org/10.1016/j.aca.2007.07.072
  13. Ernst, A. Z.; Sun, L. S.; Wiaderek, K.; Kolary, A.; Zoladek, S.; Kulesza, P. J.; Cox, J. A. Electroanalysis 2007, 19, 2103. https://doi.org/10.1002/elan.200703925
  14. Wlodarczyk, R.; Chojak, M.; Miecnikowski, K.; Kolary, A.; Kulesza, P. J.; Marassi, R. J. Power Sources 2006, 159, 802. https://doi.org/10.1016/j.jpowsour.2005.11.061
  15. Sadakane, M.; Steckhan, E. Chem. Rev. 1998, 98, 219. https://doi.org/10.1021/cr960403a
  16. Bard, A. J.; Faulkner, L. R. Electrochemical Methods, 2nd ed.; John Wiley & Sons: New York, 2001.
  17. Lee, L.; Wang, J. X.; Adzic, R. R.; Robinson, I. K.; Gewirth, A. A. J. Am. Chem. Soc. 2001, 123, 8838. https://doi.org/10.1021/ja0161352
  18. Kim, J.; Gewirth, A. A. Langmuir 2003, 19, 8934. https://doi.org/10.1021/la034708d
  19. Cline, K. K.; McDermott, M. T.; McCreery, R. L. J. Phys. Chem. 1994, 98, 5314. https://doi.org/10.1021/j100071a023
  20. Xu, J. S.; Chen, Q. Y.; Swain, G. M. Anal. Chem. 1998, 70, 3146. https://doi.org/10.1021/ac9800661
  21. Choi, S.; Kim, J., unpublished result.
  22. Sun, C. Q.; Zhao, J. H.; Xu, H. D.; Sun, Y. P.; Zhang, X.; Shen, J. C. J. Electroanal. Chem. 1997, 435, 63. https://doi.org/10.1016/S0022-0728(97)00041-7
  23. Martel, D.; Kuhn, A. Electrochim. Acta 2000, 45, 1829. https://doi.org/10.1016/S0013-4686(99)00399-0

Cited by

  1. Speciation in strongly acidic metastable solutions of oxotungstate(vi) compounds vol.62, pp.6, 2013, https://doi.org/10.1007/s11172-013-0185-z
  2. Heterogeneous Electron Transfer at Polyoxometalate-modified Electrode Surfaces vol.31, pp.1, 2009, https://doi.org/10.5012/bkcs.2010.31.01.104
  3. Spectroscopic readout of polyoxometalates' molecular information via self-assembly vol.50, pp.5, 2014, https://doi.org/10.1039/c3cc47300g
  4. Thermodynamics, Electrode Kinetics, and Mechanistic Nuances Associated with the Voltammetric Reduction of Dissolved [n-Bu4N]4[PW11O39{Sn(C6H vol.3, pp.4, 2009, https://doi.org/10.1021/acsaem.0c00405
  5. Electrode Material Dependence, Ion Pairing, and Progressive Increase in Complexity of the α-[S2W18O62]4-/5-/6-/7-/8-/9-/10- Reduction Processes in Ace vol.124, pp.29, 2009, https://doi.org/10.1021/acs.jpcc.0c04735