DOI QR코드

DOI QR Code

Surface Characteristics of Direct Fluorinated Single-walled Carbon Nanotubes

  • Published : 2009.09.20

Abstract

The single-walled carbon nanotubes (SWCNTs) produced by chemical vapor deposition (CVD) were directly fluorinated with fluorine ($F_2$) gas in a temperature range 20 ~ 400 ${^{\circ}C}$. The surface properties and morphology of the SWCNTs were investigated in terms of fluorination temperature. As a result, Raman spectra showed a pair of bands at 1340 and 1590 $cm^{-1}$ peculiar to disordered $sp^2$-carbons. These results indicated that C-F bonds were formed on the rear surfaces of the nanotubes by fluorination, while the external surfaces as well as the layers between the internal and external surfaces retained their $sp^2$-hybridization. XPS analysis exhibited that fluorine atoms were bonded to carbon atoms on internal surfaces (rear surfaces) of the nanotubes and the amount of fluorine attached on the nanotubes was increased with increasing the fluorination temperature. Consequently, the direct fluorination of carbon nanotubes led to functionalization and modification of pristine nanotubes with respect to surface and morphological properties.

Keywords

References

  1. Iijima, S.; Ichihashi, T. Nature 1993, 363, 603 https://doi.org/10.1038/363603a0
  2. Velasco-Santos, C.; Martínez-Hernández, A. L.; Lozada-Cassou, M.; Alvarez-Castillo, A.; Castaño, V. M. Nanotechnology 2002, 13, 495 https://doi.org/10.1088/0957-4484/13/4/311
  3. Bonard, J. M.; Kind, H.; Stöckli, T.; Nilsson, L. O. Solid-State Electron 2001, 45, 893 https://doi.org/10.1016/S0038-1101(00)00213-6
  4. Elzbieta, F.; François, B. Carbon 2002, 40, 1775 https://doi.org/10.1016/S0008-6223(02)00045-3
  5. Wenzhen, L.; Changhai, L.; Jieshan, Q.; Weijiang, Z.; Hongmei, H.; Zhaobin, W.; Gongquan, S.; Qin, X. Carbon 2002, 40, 791 https://doi.org/10.1016/S0008-6223(02)00039-8
  6. Peifang, L.; Junhu, H. Sens. Actuators B 2002, 84, 194 https://doi.org/10.1016/S0925-4005(02)00024-2
  7. Tucknott, R.; Yaliraki, S. N. Chem. Phys. 2002, 281, 455 https://doi.org/10.1016/S0301-0104(02)00615-8
  8. Argon, A. S. Fracture: Strength and Toughness Mechanisms. In Comprehensive Composite Materials; Elsevier: New York, 2000; Vol. 1, p 24
  9. Krishnan, A.; Dujardin, E.; Ebbesen, T. W.; Yanilos, P. N.; Treacy, M. M. Phys. Rev. B 1998, 58, 14013 https://doi.org/10.1103/PhysRevB.58.14013
  10. Yu, M. F.; Files, B. F.; Arepalli, S.; Ruoff, R. S. Phys. Rev. Lett. 2000, 84, 5552 https://doi.org/10.1103/PhysRevLett.84.5552
  11. Mickelson, E. T.; Huffman, C. B.; Rinzler, A. G.; Smalley, R. E.; Hauge, R. H.; Margrave, J. L. Chem. Phys. Lett. 1998, 296, 188 https://doi.org/10.1016/S0009-2614(98)01026-4
  12. Mickelson, E. T.; Chiang, I. W.; Zimmerman, J. L.; Boul, P. J.; Lozano, J.; Liu, J.; Smally, R. E.; Hauge, R. H.; Margrave, J. L. J. Phys. Chem. B 1999, 103, 4318 https://doi.org/10.1021/jp9845524
  13. Kelly, K. F.; Chiang, I. W.; Mickelson, E. T.; Hauge, R. H.; Margrave, J. L.; Wang, X.; Scuseria, G. E.; Radloff, C.; Halas, N. J. Chem. Phys. Lett. 1999, 313, 445 https://doi.org/10.1016/S0009-2614(99)00973-2
  14. Boul, P. J.; Liu, J.; Mickelson, E. T.; Huffman, C. B.; Erickson, L. M.; Chiang, I. W.; Smith, K. A.; Colbert, D. T.; Hauge, R. H.; Margrave, J. L.; Smally, R. E. Chem. Phys. Lett. 1999, 310, 367 https://doi.org/10.1016/S0009-2614(99)00713-7
  15. Chamssedine, F.; Claves, D. Chem. Phys. Lett. 2008, 454, 252 https://doi.org/10.1016/j.cplett.2008.01.077
  16. Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. In Physical Properties of Carbon Nanotubes; Imperial College Press: London, 1998
  17. Lamy de la Chapell, M.; Lefrant, S.; Journet, C.; Maser, W.; Bernier, P. Carbon 1998, 36, 705 https://doi.org/10.1016/S0008-6223(98)00026-8
  18. Pelletier, M. J. In Analytical Applications of Raman Spectroscopy; Blackwell; Oxford, 1999
  19. Swamy, S. S.; Calderon-Moreno, J. M.; Yoshimura, M. J. Mater. Res. 2002, 17, 734 https://doi.org/10.1557/JMR.2002.0106
  20. Lee, Y. S.; Cho, T. H.; Lee, B. K.; Rho, J. S.; An, K. H.; Lee, Y. H. J. Fluo. Chem. 2002, 120, 99
  21. Park, S. J.; Seo, M. K.; Lee, Y. S. Carbon 2003, 41, 723 https://doi.org/10.1016/S0008-6223(02)00384-6
  22. Mickelson, E. T.; Huffman, C. B.; Rinzler, A. G.; Smalley, R. E.; Hauge, R. H.; Margrave, J. L. Chem. Phys. Lett. 1998, 296, 188 https://doi.org/10.1016/S0009-2614(98)01026-4
  23. Wu, S.; Kang, E. T.; Neoh, K. G. Appl. Surf. Sci. 2001, 174, 296 https://doi.org/10.1016/S0169-4332(01)00195-7
  24. Park, S. J.; Seo, M. K.; Rhee, K. Y. Mater. Sci. Eng. A 2003, 356, 219 https://doi.org/10.1016/S0921-5093(03)00134-5
  25. Hamwi, A.; Alvergnat, H.; Bonnamy, S.; Béguin, F. Carbon 1997, 35, 723 https://doi.org/10.1016/S0008-6223(97)00013-4

Cited by

  1. Effect of Hydrogen Fluoride Addition and Synthesis Temperature on the Structure of Double-Walled Carbon Nanotubes Fluorinated by Molecular Fluorine pp.03701972, 2018, https://doi.org/10.1002/pssb.201700261