DOI QR코드

DOI QR Code

Structures and Electrochemical Properties of LiNi0.5-xCo2x}Mn0.5-xO2 as Cathode Materials for Lithium-ion Batteries

  • Choi, Hyun-Chul (Department of Chemistry, Chonnam National University) ;
  • Kim, Ho-Jin (School of Materials Science and Engineering, Kyungpook National University) ;
  • Jeong, Yeon-Uk (School of Materials Science and Engineering, Kyungpook National University) ;
  • Jeong, Soo-Hwan (Department of Chemical Engineering, Kyungpook National University) ;
  • Cheong, In-Woo (Department of Applied Chemistry, Kyungpook National University) ;
  • Jung, Uoo-Chang (Korea Institute of Industrial Technology)
  • Published : 2009.11.20

Abstract

$LiNi_{0.5-x}Co_{2x}Mn_{0.5-x}O_{2}$ (x = 0, 0.1, 1/6, 1.2, 0.3) were synthesized by the solid-state reaction method. The crystal structure was analyzed by X-ray powder diffraction and Rietveld refinement. $LiNi_{0.5-x}Co_{2x}Mn_{0.5-x}O_{2}$ samples give single phases of hexagonal layered structures with a space group of R-3m for x = 0.1, 1/6, 0.2, and 0.3. The lattice constants of a and c-axis were decreased with the increase in Co contents in samples. The thickness of MO2 slab was decreased and inter-slab distance was increased with the increase in Co contents in $LiNi_{0.5-x}Co_{2x}Mn_{0.5-x}O_{2}$. According to XPS analysis, the valence states of Mn, Co, and Ni in the sample are mainly +4, +3, and +3, respectively. The discharge capacity of 202 mAh/g at 0.1C-rate in the potential range of 4.7 - 3.0 V was obtained in $LiNi_{0.3}Co_{0.4}Mn_{0.3}O_2$ sample, and $LiNi_{0.4}Co_{0.2}Mn_{0.4}O_2$ gives excellent cycle performance in the same potential range.

Keywords

References

  1. Armand, M. Solid State Ionics 1994, 69, 309 https://doi.org/10.1016/0167-2738(94)90419-7
  2. Mitzushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. Mater. Res. Bull. 1980, 15, 783 https://doi.org/10.1016/0025-5408(80)90012-4
  3. Yoshio, M; Tanaka, H.; Tomonaga, K.; Noguchi, H. J. Power Sources 1992, 40, 347 https://doi.org/10.1016/0378-7753(92)80023-5
  4. Padhi, K.; Nanjundaswamy, K. S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144, 1188 https://doi.org/10.1149/1.1837571
  5. Thackeray, M. M.; Shao-Horn, Y.; Kahaian, A. J.; Kepler, K. D.; Skinner, E.; Vaughey, J. T.; Hackney, S. A. Electrochem. Solid-State Lett. 1998, 1, 7 https://doi.org/10.1149/1.1390617
  6. Wen, S. J.; Richardson, T. J.; Ma, L.; Striebel, K. A.; Ross, P. N.; Cairns, E. J. J. Electrochem. Soc. 1996, 143, L136 https://doi.org/10.1149/1.1836902
  7. Doeff, M. M.; Peng, M. Y.; Ma, Y.; De Jonghe, L. C. J. Electrochem. Soc. 1994, 141, L145 https://doi.org/10.1149/1.2059323
  8. Paulsen, J. M.; Thomas, C. L.; Dahn, J. R. J. Electrochem. Soc. 2000, 147, 2862 https://doi.org/10.1149/1.1393617
  9. Saadoune, I.; Delmas, C. J. Solid State Chem. 1998, 136, 8 https://doi.org/10.1006/jssc.1997.7599
  10. Wang, Y.; Jiang, J.; Dahn, J. R. Electrochem. Commun. 2007, 9, 2534 https://doi.org/10.1016/j.elecom.2007.07.033
  11. Yabuuchi, N.; Ohzuku, T. J. Power Sources 2003, 119-121, 171 https://doi.org/10.1016/S0378-7753(03)00173-3
  12. Bommel, A. V.; Dahn, J. R. Chem. Mater. 2009, 21, 1500 https://doi.org/10.1021/cm803144d
  13. Shaju, K. M.; Subba Rao, G. V.; Chowdari, B. V. R. Electrochim. Acta 2002, 48, 145 https://doi.org/10.1016/S0013-4686(02)00593-5
  14. Shaju, K. M.; Subba Rao, G. V.; Chowdari, B. V. R. Electrochim. Acta 2003, 48, 1505 https://doi.org/10.1016/S0013-4686(03)00088-4
  15. Li, D.; Kata, Y.; Kobayakawa, K.; Noguchi, H.; Sata, Y. J. Power Sources 2006, 160, 1342 https://doi.org/10.1016/j.jpowsour.2006.02.080
  16. Kosova, N. N.; Devyatkina, R. T.; Kaichev, V. V. J. Power Sources 2007, 174, 965 https://doi.org/10.1016/j.jpowsour.2007.06.051
  17. Guo, R.; Shi, P.; Cheng, X.; Du, C. J. Alloys Compd. 2009, 473, 53 https://doi.org/10.1016/j.jallcom.2008.05.102
  18. Chebiam, R. V.; Prado, F.; Manthiram, A. Chem. Mater. 2001, 13, 2951 https://doi.org/10.1021/cm0102537