DOI QR코드

DOI QR Code

Transport Properties of Polypyrrole Films Doped with Sulphonic Acids

  • Basavaraja, C. (Department of Chemistry and Institute of Basic Sicence, Inje University) ;
  • Kim, Na-Ri (Department of Chemistry and Institute of Basic Sicence, Inje University) ;
  • Jo, Eun-Ae (Department of Chemistry and Institute of Basic Sicence, Inje University) ;
  • Pierson, R. (Department of Chemistry and Institute of Basic Sicence, Inje University) ;
  • Huh, Do-Sung (Department of Chemistry and Institute of Basic Sicence, Inje University) ;
  • Venkataraman, A. (Department of Materials Science, Gulbarga University)
  • 발행 : 2009.11.20

초록

The polymer blends containing polypyrrole (PPy) and the sulphonic acids such as β-naphthalene sulfonic acid (NSA), camphor sulfonic acid (CSA), and dodecylbenzenesulfonic acid (DBSA) were synthesized by in situ deposition technique in an aqueous media using ammonium per sulfate (APS) as an initiator. The obtained films were characterized by scanning electron microscopy (SEM), and the thermal behavior of these polymer blends was analyzed by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The temperature-dependent (DC) conductivity of the obtained films shows a semiconducting behavior with a negative temperature coefficient of resistivity (TCR). The conductivity data were also analyzed through Mott’s equation, which provides the variable range hopping model in three dimensions. The parameters such as density of states at the Fermi energy, hopping energy, and hopping distance were calculated for PPy, PPy-NSA, PPy-CSA, and PPy-DBSA films, and the data were compared.

키워드

참고문헌

  1. Vidal, J. C.; Garcia, E.; Castillo, J. R. Anal. Chim. Acta 1999, 385, 213 https://doi.org/10.1016/S0003-2670(98)00838-1
  2. Campbell, T. E.; Hodgson, A. J.; Wallace, G. G. Electroanalysis 1999, 11, 215 https://doi.org/10.1002/(SICI)1521-4109(199904)11:4<215::AID-ELAN215>3.0.CO;2-#
  3. Kincal, D.; Kamer, A.; Child, A. D.; Reynold, J. R. Synth. Met. 1998, 92, 53 https://doi.org/10.1016/S0379-6779(98)80022-2
  4. Kemp, N. T.; Flanagan, G. U.; Kaiser, A. B.; Trodahl, H. J.; Chapman, B.; artridge, A. C.; Buckley, R. G. Synth. Met. 1999, 101, 434 https://doi.org/10.1016/S0379-6779(98)01118-7
  5. Jerome, C.; Labaye, D.; Bodart, I.; Jerome, R. Synth. Met. 1999, 101, 3 https://doi.org/10.1016/S0379-6779(98)00524-4
  6. Smela, E. J. Micromech. Microeng. 1999, 9, 1 https://doi.org/10.1088/0960-1317/9/1/001
  7. Selvaraj, M.; Palraj, S.; Maruthan, K.; Rajagopal, G.; Venkatachari, G. Synth. Met. 2008, 158, 888 https://doi.org/10.1016/j.synthmet.2008.06.031
  8. Li, J.; Zhu, L.; Shu, B.; Tang, H. Synth. Met. 2008, 158, 516 https://doi.org/10.1016/j.synthmet.2008.03.015
  9. Basavaraja, C.; Choi, Y. M.; Park, H. T.; Huh, D. S.; Lee, J. W.; Revanasiddappa, M.; Raghavendra, S. C.; Khasim, S.; Vishnuvardhan, T. K. Bull. Korean Chem. Soc. 2007, 28(7), 1104 https://doi.org/10.5012/bkcs.2007.28.7.1104
  10. Vishnuvardhan, T. K.; Kulkarni, V. R.; Basavaraja, C.; Raghavendra, S. C. Bull. Mater. Sci. 2006, 29(1), 77 https://doi.org/10.1007/BF02709360
  11. Iroh, J. O.; Williams, C. Synth. Met. 1999, 99, 1 https://doi.org/10.1016/S0379-6779(98)00160-X
  12. Cao, L.; Chen, H. Z.; Zhou, H. B.; Zhu, L.; Sun, J. Z.; Zhang, X. B.; Xu, J. M.; Wang, M. Adv. Mater. 2003, 15, 909 https://doi.org/10.1002/adma.200304637
  13. Goren, M.; Qi, Z. G.; Lennox, R. B. Chem. Mater. 2000, 12, 1222 https://doi.org/10.1021/cm990736z
  14. Su, W.; Iroh, J. O. Synth. Met. 1998, 95, 159 https://doi.org/10.1016/S0379-6779(97)04112-X
  15. Dong, H.; Prasad, S.; Nyame, V.; Jones, W. E. Chem. Mater. 2004, 16, 371 https://doi.org/10.1021/cm0347180
  16. Liu, W.; Kumar, J.; Tripathy, S.; Samuelson, L. A. Langmuir 2002, 18, 9696 https://doi.org/10.1021/la0206357
  17. Jang, J.; Oh, J. H.; Li, X. L. J. Mater. Chem. 2004, 14, 2872 https://doi.org/10.1039/b405607h
  18. Adams, P. N.; Devasagayam, P.; Pomfret, S. L.; Abell, L.; Monkman, A. P. J. Phys.: Condens. Matter. 1998, 10, 8293 https://doi.org/10.1088/0953-8984/10/37/015
  19. Yoo, J. E.; Cross, J. L.; Bucholz, T. L.; Lee, K. S.; Espe, M. P.; Loo, Y. L. J. Mater. Chem. 2007, 17, 1268 https://doi.org/10.1039/b618521e
  20. Ding, S. J.; Zhang, C. L.; Yang, M.; Qu, X. Z.; Lu, Y. F.; Yang, Z. Z. Polymer 2006, 47, 8360 https://doi.org/10.1016/j.polymer.2006.10.001
  21. Zhang, F.; Halverson, P. A.; Lunt, B.; Linford, M. R. Synth. Met. 2006, 156, 932 https://doi.org/10.1016/j.synthmet.2006.06.002
  22. Dufour, B.; Rannou, P.; Fedorko, P.; Djurado, D.; Travers, J. P.; Pron, A. Chem. Mater. 2001, 13, 4032 https://doi.org/10.1021/cm001224j
  23. Dufour, B.; Rannou, P.; Djurado, D.; Janeczek, H.; Zagorska, M.; Geyer, A.; Travers, J. P. A. Pron. Chem. Mater. 2003, 15, 1587 https://doi.org/10.1021/cm021354n
  24. Liu, Y.; O'Keefe, M. J.; Beyaz, A.; Thomas, P. S. Surf. Interface Anal. 2005, 37, 782 https://doi.org/10.1002/sia.2077
  25. Yasin, S. F.; Zihlif, A. M.; Ragosta, A. J. Mat. Sci: Materials in Electronics 2005, 16, 63 https://doi.org/10.1007/s10854-005-6452-5
  26. Lim, S. L.; Tan, K. L.; Kang, E. T. Langmuir 1998, 14, 5305 https://doi.org/10.1021/la980205+
  27. Rosenberg, H. M. Low Temperature Solid State Physics; Oxford University Press: UK, 2000
  28. Joo, J.; Long, S. M.; Pouget, J. P.; Oh, E. J.; MacDiarmid, A. G.; Epstein, A. J. Phys. Rev. B 1998, 57, 9567 https://doi.org/10.1103/PhysRevB.57.9567
  29. Kaiser, A. K. Rep. Prog. Phys. 2001, 64, 1 https://doi.org/10.1088/0034-4885/64/1/201
  30. Hauser, J. J.; Kimerling, L. C. Phys. Rev. B 1975, 11, 4043 https://doi.org/10.1103/PhysRevB.11.4043
  31. Efros, A. L.; Shlovskii, B. I. J. Phys. C 1975, 8, 49 https://doi.org/10.1088/0022-3719/8/4/003
  32. Sheng, P. Philos. Mag. A 1992, 65, 357 https://doi.org/10.1080/13642819208207638
  33. Zuppiroli, L.; Bussac, M. N.; Paschen, S.; Chauvet, O.; Forro, L. Phys. Rev. B 1994, 50, 5196 https://doi.org/10.1103/PhysRevB.50.5196
  34. Nair, K.; Mitra, S. S. J. Non-Cryst. Solids. 1977, 24, 1 https://doi.org/10.1016/0022-3093(77)90057-6
  35. Mott, N. F.; Davis, E. A. Electronic Processes in Non-Crystalline Materials; Clarendon Press: Oxford, 1979
  36. Singh, R.; Tandon, R. P.; Panwar, V. S.; Chandra, S. J. Appl. Phys. 1991, 69, 2504 https://doi.org/10.1063/1.348688
  37. Rouleau, J. F.; Goyette, J.; Bose, T. K. Phys. Rev. B 1995, 52, 4801 https://doi.org/10.1103/PhysRevB.52.4801
  38. Basavaraja, C.; Veeranagouda, Y.; Lee, K.; Pierson, R.; Revanasiddappa, M.; Huh, D. S. Bull. Korean Chem. Soc. 2008, 29(12), 2423 https://doi.org/10.5012/bkcs.2008.29.12.2423

피인용 문헌

  1. Polypyrrole metacomposites with different carbon nanostructures vol.22, pp.11, 2012, https://doi.org/10.1039/c2jm14020a
  2. Nano Structured Potentiometric Sensors Based on Polyaniline Conducting Polymer for Determination of Cr (VI) vol.33, pp.4, 2012, https://doi.org/10.5012/bkcs.2012.33.4.1247
  3. Synthesis, characterization, and conductivity studies of polypyrrole/copper sulfide nanocomposites pp.00218995, 2012, https://doi.org/10.1002/app.38304
  4. A novel method for synthesis of polypyrrole grafted chitin vol.23, pp.9, 2016, https://doi.org/10.1007/s10965-016-1075-5
  5. Synthesis, characterization, electrical and luminescence performance of novel copolymer of anthracene/pyrrole vol.28, pp.7, 2017, https://doi.org/10.1007/s10854-016-6167-9
  6. as an Aqueous Na-Ion Anode vol.162, pp.10, 2015, https://doi.org/10.1149/2.0961510jes
  7. Electro-capacitive performance of haemoglobin/polypyrrole composites for high power density electrode vol.9, pp.1, 2018, https://doi.org/10.1186/s40543-018-0156-y
  8. Thermal Stimulated Conductivity in Cellulose Triacetate-Multiwalled Carbon Nanotube Polymer Films vol.31, pp.8, 2009, https://doi.org/10.5012/bkcs.2010.31.8.2207
  9. Enhancements in Conductivity and Thermal Stabilities of Polypyrrole/Polyurethane Nanoblends vol.115, pp.5, 2011, https://doi.org/10.1021/jp1081643
  10. High-Performance Colorimetric Room-Temperature NO2 Sensing Using Spin-Coated Graphene/Polyelectrolyte Reflecting Film vol.11, pp.35, 2009, https://doi.org/10.1021/acsami.9b09901