• Title/Summary/Keyword: Mott's equation

Search Result 2, Processing Time 0.017 seconds

Transport Properties of Polypyrrole Films Doped with Sulphonic Acids

  • Basavaraja, C.;Kim, Na-Ri;Jo, Eun-Ae;Pierson, R.;Huh, Do-Sung;Venkataraman, A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2701-2706
    • /
    • 2009
  • The polymer blends containing polypyrrole (PPy) and the sulphonic acids such as β-naphthalene sulfonic acid (NSA), camphor sulfonic acid (CSA), and dodecylbenzenesulfonic acid (DBSA) were synthesized by in situ deposition technique in an aqueous media using ammonium per sulfate (APS) as an initiator. The obtained films were characterized by scanning electron microscopy (SEM), and the thermal behavior of these polymer blends was analyzed by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The temperature-dependent (DC) conductivity of the obtained films shows a semiconducting behavior with a negative temperature coefficient of resistivity (TCR). The conductivity data were also analyzed through Mott’s equation, which provides the variable range hopping model in three dimensions. The parameters such as density of states at the Fermi energy, hopping energy, and hopping distance were calculated for PPy, PPy-NSA, PPy-CSA, and PPy-DBSA films, and the data were compared.

Photoelectrochemical Water Splitting on a Delafossite CuGaO2 Semiconductor Electrode

  • Lee, Myeongsoon;Kim, Don;Yoon, Yong Tae;Kim, Yeong Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3261-3266
    • /
    • 2014
  • A pellet of polycrystalline $CuGaO_2$ with a delafossite structure was prepared from $Ga_2O_3$ and CuO by high-temperature solid-state synthesis. The $CuGaO_2$ pellet was a p-type semiconductor for which the electrical conductivity, carrier density, carrier mobility and Seebeck coefficient were $5.34{\times}10^{-2}{\Omega}^{-1}cm^{-1}$, $3.5{\times}10^{20}cm^{-3}$, $9.5{\times}10^{-4}cm^2V^{-1}s^{-1}$ at room temperature, and $+360{\mu}V/K$, respectively. It also exhibited two optical transitions at about 2.7 and 3.6 eV. The photoelectrochemical properties of the $CuGaO_2$ pellet electrode were investigated in aqueous electrolyte solutions. The flat-band potential of this electrode, determined using a Mott-Schottky plot, was +0.18 V vs SCE at pH 4.8 and followed the Nernst equation with respect to pH. Under UV light illumination, a cathodic photocurrent developed, and molecular hydrogen simultaneously evolved on the surface of the electrode due to the direct reduction of water without deposition of any metal catalyst.