DOI QR코드

DOI QR Code

A Substrate Serves as a Hydrogen Atom Donor in the Enzyme-Initiated Catalytic Mechanism of Dual Positional Specific Maize Lipoxygenase-1

  • Huon, Thavrak (Department of Molecular Biotechnology, BK21 Globalization of Biotechnology Human Resources, Biotechnology Research Institute, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Jang, Sung-Kuk (Department of Molecular Biotechnology, BK21 Globalization of Biotechnology Human Resources, Biotechnology Research Institute, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Cho, Kyoung-Won (Department of Molecular Biotechnology, BK21 Globalization of Biotechnology Human Resources, Biotechnology Research Institute, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Rakwal, Randeep (Health Technology Research Center (HTRC), National Institute of Advanced Industrial Science and Technology (AIST)) ;
  • Woo, Je-Chang (Department of Biotechnology, College of Natural Sciences, Mokpo National University) ;
  • Kim, Il-Chul (Department of Biological Sciences, College of Natural Sciences, Chonnam National University) ;
  • Chi, Seung-Wook (Medical Proteomics Research Center, KRIBB) ;
  • Han, Ok-Soo (Department of Molecular Biotechnology, BK21 Globalization of Biotechnology Human Resources, Biotechnology Research Institute, College of Agriculture and Life Sciences, Chonnam National University)
  • Published : 2009.04.20

Abstract

The maize lipoxgyenase-1 is a non-traditional dual positional specific enzyme and the reaction proceeds via enzyme-initiated catalysis. Bioinformatic analysis indicated that the maize lipoxygenase-1 is structurally more similar to soybean LOX1 than pea LOXN2 in that it has an additional external loop (residues 318-351) in the carboxy-terminal catalytic domain. We analyzed the dependence of product distribution on concentration of linoleic acid and monitored the formation of hydroperoxyoctadecadienoic acid as a function of enzyme concentration. Product distribution was strongly influenced by substrate concentration, such that kinetically-controlled regioisomers were enriched and thermodynamically-controlled regioisomers were depleted at high substrate concentration. Kinetic studies indicated that the formation of hydroperoxyoctadecadienoic acid saturated rapidly in an enzyme concentration-dependent manner, which implied that reactivation by reoxidation of inactive Fe(II) failed to occur. Our results support the previously proposed enzyme-initiated catalytic mechanism of the maize lipoxgyenase-1 and reveals that a substrate molecule serves as a hydrogen atom donor in its enzyme-initiated catalysis.

Keywords

References

  1. Siedow, J. N. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1991, 42, 145. https://doi.org/10.1146/annurev.pp.42.060191.001045
  2. Brash, A. R. J. Biol. Chem. 1999, 274, 23679. https://doi.org/10.1074/jbc.274.34.23679
  3. Porter, N. A.; Caldwell, S. E.; Mills, K. A. Lipids 1995, 30, 277. https://doi.org/10.1007/BF02536034
  4. Feussner, I.; Wasternack, C. Rev. Plant Biol. 2002, 53, 275. https://doi.org/10.1146/annurev.arplant.53.100301.135248
  5. L$\ddot{u}$tteke, T.; Krieg, P.; F$\ddot{u}$rstenberger, G.; von der Lieth, C. W. Bioinformatics 2003, 19, 2482. https://doi.org/10.1093/bioinformatics/btg337
  6. Kim, E. S.; Choi, E.; Kim, Y.; Cho, K.; Lee, A.; Shim, J.; Rakwal, R.; Agrawal, G. K.; Han, O. Plant Mol. Biol. 2003, 52, 1203. https://doi.org/10.1023/B:PLAN.0000004331.94803.b0
  7. Hughes, R. K.; West, S. I.; Hornostaj, A. R.; Lawson, D. M.; Fairhurst, S. A.; Sanchez, R. O.; Hough, P.; Robinson, B. H.; Casey, R. Biochem. J. 2001, 353, 345. https://doi.org/10.1042/0264-6021:3530345
  8. Fuller, M. A.; Weichert, H.; Fischer, A. M.; Feussner, I.; Grimes, H. D. Arch. Biochem. Biophys. 2001, 388, 146. https://doi.org/10.1006/abbi.2000.2269
  9. Garbe, L.; Almeida, R. B.; Nagel, R.; Wackerbauer, K.; Tressl, R. J. Agric. Food Chem. 2006, 54, 946. https://doi.org/10.1021/jf051993t
  10. Kim, E. S.; Kim, H.; Park, R.; Lee, Y.; Han, O. J. Plant Physiol. 2002, 159, 1263. https://doi.org/10.1078/0176-1617-00898
  11. Nemchenko, A.; Kunze, S.; Feussner, I.; Kolomiets, M. J. Exp. Bot. 2006, 57, 3767. https://doi.org/10.1093/jxb/erl137
  12. Cho, K.; Jang, S.; Huon, T.; Park, S.; Han, O. J. Biochem. Mol. Biol. 2007, 40, 100. https://doi.org/10.5483/BMBRep.2007.40.1.100
  13. Butovich, I. A.; Reddy, C. C. Biochim. Biophys. Acta 2001, 1546, 379. https://doi.org/10.1016/S0167-4838(01)00162-5
  14. Knapp, M. J.; Seebeck, F. P.; Klinman, J. P. J. Am. Chem. Soc. 2001, 123, 2931. https://doi.org/10.1021/ja003855k
  15. Jang, S.; Huon, T.; Kim, K.; Um, E.; Han, O. Org. Lett. 2007, 9, 3113. https://doi.org/10.1021/ol0712024
  16. Veronico, P.; Giannino, D.; Melillo, M. T.; Leone, A.; Reyes, A.; Kennedy, M. W.; Bleve-Zacheo, T. Plant Physiol. 2006, 141, 1045. https://doi.org/10.1104/pp.106.081679
  17. Coffa, G.; Imber, A. N.; Maguire, B. C.; Laxmikanthan, G.; Schneider, C.; Gaffney, B. J.; Brash, A. R. J. Biol. Chem. 2005, 280, 38756. https://doi.org/10.1074/jbc.M504870200
  18. Zhang, L.; Hamberg, M. Lipids 1996, 31, 803. https://doi.org/10.1007/BF02522975
  19. Wang, R.; Shen, W.; Liu, L.; Jiang, L.; Liu, Y.; Su, N.; Wan, J. Plant Mol. Biol. 2008, 66, 401. https://doi.org/10.1007/s11103-007-9278-0
  20. Feussner, I.; Bachmann, A.; Höhne, M.; Kindl, H. FEBS Lett. 1998, 431, 433. https://doi.org/10.1016/S0014-5793(98)00808-4
  21. Hughes, R. K.; Wu, Z.; Robinson, D. S.; Hardy, D.; West, S. I.; Fairhurst, S. A.; Casey, R. Biochem. J. 1998, 333, 33.
  22. Fukushige, H.; Wang, C.; Simpson, T. D.; Gardner, H. W.; Hildebrand, D. F. J. Agric. Food Chem. 2005, 53, 5691. https://doi.org/10.1021/jf047958o
  23. Tomchick, D. R.; Phan, P.; Cymborowski, M.; Minor, W.; Holman, T. R. Biochemistry 2001, 40, 7509. https://doi.org/10.1021/bi002893d
  24. Laskowski, R. A.; Rullmannn, J. A.; MacArthur, M. W.; Kaptein, R.; Thornton, J. M. J. Biomol. NMR 1996, 8, 477.
  25. Hilbers, M. P.; Finazzi-Agro, A.; Veldink, G. A.; Vliegenthart, J. F. G. Int. J. Biochem. Cell Biol. 1996, 28, 751. https://doi.org/10.1016/1357-2725(96)00018-0
  26. Schilstra, M. J.; Veldink, G. A.; Vliegenthart, J. F. G. Biochemistry 1994, 33, 3974. https://doi.org/10.1021/bi00179a025
  27. Goldsmith, C. R.; Stack, T. D. P. Inorg. Chem. 2006, 45, 6048 https://doi.org/10.1021/ic060621e
  28. Kuhn, H. Prostaglandins Other Lipid Mediat. 2000, 62, 255.
  29. Blee, E. Fett/Lipid 1998, 100, 121. https://doi.org/10.1002/(SICI)1521-4133(19985)100:4/5<121::AID-LIPI121>3.0.CO;2-4
  30. Pinot, F.; Benveniste, I.; Salaün, J. P.; Loreu, O.; Noel, J. P.; Schreiber, L.; Durst, F. Biochem. J. 1999, 342, 27. https://doi.org/10.1042/0264-6021:3420027
  31. Bhattacharjee, S. Curr. Sci. 2005, 89, 1113.
  32. Lee, S. H.; Ahn, S. J.; Im, Y. J.; Cho, K.; Chung, G. C.; Cho, B. H.; Han, O. Biochem. Biophys. Res. Commun. 2005, 330, 1194. https://doi.org/10.1016/j.bbrc.2005.03.098
  33. Cho, K.; Agrawal, G. K.; Shibato, J.; Jung, Y. H.; Kim, Y. K.; Nahm, B. H.; Jwa, N. S.; Tamogami, S.; Han, O.; Kohda, K.; Iwahashi, H.; Rakwal, R. J. Proteome Res. 2007, 6, 3581. https://doi.org/10.1021/pr070358v
  34. Kim, J. Y.; Park, S. J.; Jang, B.; Jung, C. H.; Ahn, S. J.; Goh, C. H.; Cho, K.; Han, O.; Kang, H. Plant J. 2007, 50, 439. https://doi.org/10.1111/j.1365-313X.2007.03057.x
  35. Mita, G.; Fasano, P.; De Domenico, S.; Perrone, G.; Epifani, F.; Iannacone, R.; Casey, R.; Santino, A. J. Exp. Bot. 2007, 58, 1803. https://doi.org/10.1093/jxb/erm039