References
- Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Nature 2003, 423 , 705 https://doi.org/10.1038/nature01650
- Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F. Acc. Chem. Res. 2005, 38, 217 https://doi.org/10.1021/ar040163i
- Kitagawa, S.; Kitaura, R.; Noro, S.-I. Angew. Chem. Int. Ed. 2004, 43, 2334 https://doi.org/10.1002/anie.200300610
- Ferey, G. Chem. Soc. Rev. 2008, 37, 191 https://doi.org/10.1039/b618320b
- Ferey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surble, S.; Mirgiolaki, I. Science 2005, 309, 2040 https://doi.org/10.1126/science.1116275
- Kickelbick, G. Angew. Chem. Int. Ed. 2004, 43, 3102 https://doi.org/10.1002/anie.200301751
- Nicole, L.; Boissiere, C.; Grosso, D.; Quach, A.; Sanchez, C. J. Mater. Chem. 2005, 15, 3598 https://doi.org/10.1039/b506072a
- Biradha, K.; Fujita, M. Angew. Chem. Int. Ed. 2002, 41, 3392 https://doi.org/10.1002/1521-3773(20020916)41:18<3392::AID-ANIE3392>3.0.CO;2-V
- Zhao, X.; Xiao, B.; Fletcher, A.; Thomas, K. M.; Bradshaw, D.; Rosseinsky, M. J. Science 2004, 306, 1012 https://doi.org/10.1126/science.1101982
- Dinca, M.; Long, J. R. J. Am. Chem. Soc. 2005, 127, 9376 https://doi.org/10.1021/ja0523082
- Rowsell, J. L. C.; Spencer, E. C.; Eckert, J.; Howard, J. A. K.; Yaghi, O. M. Science 2005, 309,1350 https://doi.org/10.1126/science.1113247
- Murray, L. J.; Dinca, M.; Long, J. R. Chem. Soc. Rev. 2009, 38, 1294 https://doi.org/10.1039/b802256a
- Wu, C.-D.; Hu, A.; Zhang, L.; Lin, W. J. Am. Chem. Soc. 2005, 127, 8940 https://doi.org/10.1021/ja052431t
- Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K. Nature 2000, 404, 982 https://doi.org/10.1038/35010088
- Qiu, L.-G.; Xie, A.-J.; Zhang, L.-D. Adv. Mater. 2005, 17, 689 https://doi.org/10.1002/adma.200400663
- Forster, P. M.; Cheetham, A. K. Top. Catal. 2003, 24, 79 https://doi.org/10.1023/B:TOCA.0000003079.39312.99
- Ma, L.; Abney, C.; Lin, W. Chem. Soc. Rev. 2009, 38, 1248 https://doi.org/10.1039/b807083k
- Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. Rev. 2009 38, 1450 https://doi.org/10.1039/b807080f
- Kitaura, R.; Seki, K.; Akiyama, G.; Kitagawa, S. Angew. Chem. Int. Ed. 2003, 42, 428 https://doi.org/10.1002/anie.200390130
- Won, I.; Seo, J. S.; Kim, J. H.; Kim, H. S.; Kang, Y. S.; Kim, S.-J.; Kim, Y.; Jegal, J. Adv. Mater. 2005, 17, 80 https://doi.org/10.1002/adma.200400447
- Li, J.-R.; Kuppler, R. J.; Zhou, H.-C. Chem. Soc. Rev. 2009, 38, 1477 https://doi.org/10.1039/b802426j
- Alaerts, L.; Kirschhock, C. E. A.; Maes, M.; van der Veen, M. A.; Finsy, V.; Depla, A.; Martens, J. A.; Baron, G. V.; Jacobs, P. A.; Denayer, J. F. M.; De Vos, D. E. Angew. Chem. Int. Ed. 2007, 46, 4293 https://doi.org/10.1002/anie.200700056
- Finsy, V.; Verelst, H.; Alaerts, L.; De Vos, D. E.; Jacobs, P. A.; Baron, G. V.; Denayer, J. F. M. J. Am. Chem. Soc. 2008, 130, 7110 https://doi.org/10.1021/ja800686c
- Alaerts, L.; Maes, M.; Giebeler, L.; Jacobs, P. A.; Martens, J. A.; Denayer, J. F. M.; Kirschhock, C. E. A.; De Vos, D. E. J. Am. Chem. Soc. 2008, 130, 14170 https://doi.org/10.1021/ja802761z
- Moon, H. R.; Kim, J. H.; Suh, M. P. Angew. Chem. Int. Ed. 2005, 44, 1261 https://doi.org/10.1002/anie.200461408
- Hermes, S.; Schroder, F.; Chelmowski, R.; Woll, C.; Fischer, R. A. J. Am. Chem. Soc. 2005, 127, 13744 https://doi.org/10.1021/ja053523l
- Horcajada, P.; Serre, C.; Vallet-Regi, M.; Sebban, M.; Taulelle, F.; Ferey, G. Angew. Chem. Int. Ed. 2006, 45, 5974 https://doi.org/10.1002/anie.200601878
- Horcajada, P.; Serre, C.; Maurin, G.; Ramsahye, N. A.; Balas, F.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Ferey, G. J. Am. Chem. Soc. 2008, 130, 6774 https://doi.org/10.1021/ja710973k
- Chui, S. S.-Y.; Lo, S. M.-F.; Charmant, J. P. H.; Orpen, A. G.; Williams, I. D. Science 1999, 283,1148 https://doi.org/10.1126/science.283.5405.1148
- Seo, Y.-K.; Hundal, G.; Jang, I. T.; Hwang, Y. K.; Jun, C.-H.; Chang, J.-S. Micropor. Mesopor. Mater. 2009, 119, 331 https://doi.org/10.1016/j.micromeso.2008.10.035
- Li, Z.-Q.; Qiu, L.-G.; Xu, T.; Wu, Y.; Wang, W.; Wu, Z.-Y.; Jiang, X. Mater. Lett. 2009, 63, 78 https://doi.org/10.1016/j.matlet.2008.09.010
- Biemmi, E.; Scherb, C.; Bein, T. J. Am. Chem. Soc. 2007, 129, 8054 https://doi.org/10.1021/ja0701208
- Krawiec, P.; Kramer, M.; Sabo, M.; Kunschke, R.; Frode, H.; Kaskel, S. Adv. Eng. Mater. 2006, 8, 293 https://doi.org/10.1002/adem.200500223
- Park, S.-E.; Chang, J.-S.; Hwang, Y. K.; Kim, D. S.; Jhung, S. H.; Hwang, J.-S. Catal. Survey Asia 2004, 8, 91 https://doi.org/10.1023/B:CATS.0000026990.25778.a8
- Tompsett, G. A.; Conner, W. C.; Yngvesson, K. S. Chem. Phys. Chem. 2006, 7, 296 https://doi.org/10.1002/cphc.200500449
- (a) Xu, X.; Yang, W.; Liu, J.; Lin, L. Adv. Mater. 2000, 12,195.(Please refer to the other references for details:no.56) https://doi.org/10.1002/(SICI)1521-4095(200002)12:3<195::AID-ADMA195>3.0.CO;2-E
- Jhung, S. H.; Lee, J. H.; Chang, J.-S. Micropor. Mesopor. Mater. 2008, 112, 178 https://doi.org/10.1016/j.micromeso.2007.09.039
- Hwang, Y. K.; Chang, J.-S.; Park, S.-E.; Kim, D. S.; Kwon, Y.-U.; Jhung, S. H.; Hwang, J.-S.; Park, M.-S. Angew. Chem. Int. Ed. 2005, 44, 557
- Jhung, S. H.; Yoon, J. W.; Hwang, Y. K.; Chang, J.-S. Micropor. Mesopor. Mater. 2006, 89, 9 https://doi.org/10.1016/j.micromeso.2005.10.001
- Jhung, S. H.; Lee, J.-H.; Chang, J.-S. Bull. Kor. Chem. Soc. 2005, 26, 880 https://doi.org/10.5012/bkcs.2005.26.6.880
- Jhung, S. H.; Lee, J.-H.; Forster, P. M.; Férey, G.; Cheetham, A. K.; Chang, J.-S. Chem. Eur. J. 2006, 12, 7899 https://doi.org/10.1002/chem.200600270
- Jhung, S. H.; Lee, J.-H.; Yoon, J. W.; Serre, C.; Ferey, G.; Chang, J.-S. Adv. Mater. 2007, 19, 121 https://doi.org/10.1002/adma.200601604
- Choi, J. Y.; Kim, J.; Jhung, S. H.; Kim, H.-K.; Chang, J.-S.; Chae, H. K. Bull. Kor. Chem. Soc. 2006, 27, 1523.(Please refer to the other references for details:no.57) https://doi.org/10.5012/bkcs.2006.27.10.1523
- Choi, J.-S.; Son, W.-J.; Kim, J.; Ahn, W.-S. Micropor. Mesopor. Mater. 2008, 116, 727 https://doi.org/10.1016/j.micromeso.2008.04.033
- Gedanken, A. Ultrasonics Sonochem. 2004, 11, 47 https://doi.org/10.1016/j.ultsonch.2004.01.037
- Lee, J. S.; Ha, K.; Lee, Y.-J.; Yoon, B. K. Adv. Mater. 2005, 17, 837 https://doi.org/10.1002/adma.200401457
- Jung, S.-H.; Oh, E.; Lee, K.-H.; Park, W.; Jeong, S.-H. Adv. Mater. 2007, 19, 749 https://doi.org/10.1002/adma.200601859
- (a) Son, W.-J.; Kim, J.; Kim, J.; Ahn, W.-S. Chem. Commun. 2008, 6336(Please refer to the other references for details:no.58) https://doi.org/10.1039/b814740j
- Renzo, F. D. Catal. Today 1998, 41, 37 https://doi.org/10.1016/S0920-5861(98)00036-4
- Lethbridge, Z. A. D.; Williams, J. J.; Walton, R. I.; Evans, K. E.; Smith, C. W. Micropor. Mesopor. Mater. 2005, 79, 339 https://doi.org/10.1016/j.micromeso.2004.12.022
- Drews, T. O.; Tsapatsis, M. Current Opinion Colloid Interface Sci. 2005, 10, 233 https://doi.org/10.1016/j.cocis.2005.09.013
- Qiu, S.; Yu, J.; Zhu, G.; Terasaki, O.; Nozue, Y.; Pang, W.; Xu, R. Micropor. Mesopor. Mater. 1998, 21, 245 https://doi.org/10.1016/S1387-1811(98)00048-1
- Jhung, S. H.; Yoon, J. W.; Hwang, J.-S.; Jin, -S.; Cheetham, A. K.; Chang, J.-S. Chem. Mater. 2005, 17, 4455 https://doi.org/10.1021/cm047708n
- Didenko, Y. T.; Suslick, K. S. Nature 2002, 418, 394 https://doi.org/10.1038/nature00895
- Haque, E.; Khan, N. A.; Lee, J. E.; Jhung, S. H. Chem. Eur. J. 2009, 15, 11730 https://doi.org/10.1002/chem.200902036
- (b) Kang, K.-K.; Park, C.-H.; Ahn, W.-S. Catal. Lett. 1999, 59, 45. https://doi.org/10.1023/A:1019004101326
- (b) Ni, Z.; Masel, R. I. J. Am. Chem. Soc. 2006, 128, 12394. https://doi.org/10.1021/ja0635231
Cited by
- Accelerated Syntheses of Porous Isostructural Lanthanide-Benzenetricarboxylates (Ln-BTC) Under Ultrasound at Room Temperature vol.2010, pp.31, 2010, https://doi.org/10.1002/ejic.201000541
- Facile synthesis of cuprous oxide using ultrasound, microwave and electric heating: effect of heating methods on synthesis kinetics, morphology and yield vol.13, pp.12, 2011, https://doi.org/10.1039/c0ce00920b
- Interfacial synthesis of hollow metal–organic framework capsules demonstrating selective permeability vol.3, pp.5, 2011, https://doi.org/10.1038/nchem.1026
- Inclusion of potassium 4,4′-biphenyldicarboxylate into β-cyclodextrin: the design and synthesis of an organic secondary building unit vol.35, pp.6, 2011, https://doi.org/10.1039/c0nj00796j
- Microwave-Assisted Synthesis of Metal–Organic Frameworks vol.40, pp.2, 2011, https://doi.org/10.1039/C0DT00708K
- Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites vol.112, pp.2, 2012, https://doi.org/10.1021/cr200304e
- Recovery and reuse of heteropolyacid catalyst in liquid reaction medium through reversible encapsulation in Cu3(BTC)2 metal–organic framework vol.3, pp.6, 2012, https://doi.org/10.1039/c2sc01102f
- Room Temperature Synthesis and Size Control of HKUST-1 vol.95, pp.11, 2012, https://doi.org/10.1002/hlca.201200466
- Hetero-metal hydroxide nanostrand assisted synthesis of MIL-110 nanorod arrays on porous substrate vol.15, pp.28, 2013, https://doi.org/10.1039/c3ce40696b
- Additive-mediated size control of MOF nanoparticles vol.15, pp.45, 2013, https://doi.org/10.1039/c3ce41152d
- High-rate synthesis of Cu–BTC metal–organic frameworks vol.49, pp.98, 2013, https://doi.org/10.1039/c3cc46049e
- Esterification Reaction Utilizing Sense of Smell and Eyesight for Conversion and Catalyst Recovery Monitoring vol.91, pp.6, 2014, https://doi.org/10.1021/ed400356j
- capture vol.29, pp.9, 2015, https://doi.org/10.1002/aoc.3339
- Oxidation of amaranth dye by persulfate and peroxymonosulfate activated by ferrocene vol.92, pp.1, 2017, https://doi.org/10.1002/jctb.4986
- Hierarchical porous carbon materials prepared by direct carbonization of Al-PCP as a Pt-catalyst support for the oxygen reduction reaction vol.41, pp.15, 2017, https://doi.org/10.1039/C7NJ00655A
- New synthetic routes towards MOF production at scale vol.46, pp.11, 2017, https://doi.org/10.1039/C7CS00109F
- Recent advances in controlled modification of the size and morphology of metal-organic frameworks vol.11, pp.9, 2018, https://doi.org/10.1007/s12274-018-2039-3
- Realising the environmental benefits of metal–organic frameworks: recent advances in microwave synthesis vol.6, pp.25, 2018, https://doi.org/10.1039/C8TA02919A
- Rapid syntheses of a metal–organic framework material Cu3(BTC)2(H2O)3 under microwave: a quantitative analysis of accelerated syntheses vol.12, pp.11, 2010, https://doi.org/10.1039/b921558a
- Dense coating of surface mounted CuBTC Metal-Organic Framework nanostructures on silk fibers, prepared by layer-by-layer method under ultrasound irradiation with antibacterial activity vol.19, pp.4, 2012, https://doi.org/10.1016/j.ultsonch.2011.11.016
- Rapid solvothermal synthesis of an isoreticular metal-organic framework with permanent porosity for hydrogen storage vol.153, pp.None, 2012, https://doi.org/10.1016/j.micromeso.2011.12.036
- Scalable Room‐Temperature Conversion of Copper(II) Hydroxide into HKUST‐1 (Cu3(btc)2) vol.25, pp.7, 2009, https://doi.org/10.1002/adma.201203664
- 리뷰: MOF의 구조, 합성 및 응용 vol.17, pp.4, 2014, https://doi.org/10.9766/kimst.2014.17.4.510
- Facile Conversion of Hydroxy Double Salts to Metal–Organic Frameworks Using Metal Oxide Particles and Atomic Layer Deposition Thin-Film Templates vol.137, pp.43, 2009, https://doi.org/10.1021/jacs.5b08752
- Particle size studies to reveal crystallization mechanisms of the metal organic framework HKUST-1 during sonochemical synthesis vol.34, pp.None, 2009, https://doi.org/10.1016/j.ultsonch.2016.06.011
- Multi-metal citrate complex: green synthesis using Lime juice for hydrogen storage applications vol.9, pp.2, 2009, https://doi.org/10.22376/ijpbs.2018.9.2.b190-198
- Rapid, Selective, Ambient Growth and Optimization of Copper Benzene-1,3,5-Tricarboxylate (Cu-BTC) Metal-Organic Framework Thin Films on a Conductive Metal Oxide vol.18, pp.5, 2018, https://doi.org/10.1021/acs.cgd.8b00016
- High energy laser assisted synthesis of non-crystalline ultrahigh surface area-porous 2D-Zn++-coordinated polymeric dodeca-chloro-corenene flakes aMOFs for CH4/CO2 cap vol.93, pp.None, 2009, https://doi.org/10.1016/j.inoche.2018.05.016
- Structure, characterization, and catalytic properties of open-metal sites in metal organic frameworks vol.4, pp.2, 2009, https://doi.org/10.1039/c8re00228b
- Synthesis of newly wings like structure non-crystalline Ni++-1,3,5-tribenzyl-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione coordinated MOFs for CO2-Capture vol.1177, pp.None, 2009, https://doi.org/10.1016/j.molstruc.2018.09.069
- Preparation and characterization of metal-organic frameworks and their composite Eu2O3@[Zn2(bdc)2dabco] (ZBDh) via pulsed laser ablation in a flowing liquid vol.22, pp.18, 2020, https://doi.org/10.1039/d0ce00038h
- Sonocrystallization: Monitoring and controlling crystallization using ultrasound vol.226, pp.None, 2009, https://doi.org/10.1016/j.ces.2020.115911
- Synthesis of a metal-organic framework by plasma in liquid to increase reduced metal ions and enhance water stability vol.11, pp.37, 2009, https://doi.org/10.1039/d1ra00942g
- The role of embedded 2-ABT@Cu-BTC MOF on the anti-corrosion performance of electro-assisted deposited silica sol-gel composite film vol.267, pp.None, 2021, https://doi.org/10.1016/j.matchemphys.2021.124590
- Preparation of MOFs and MOFs derived materials and their catalytic application in air pollution: A review vol.375, pp.None, 2009, https://doi.org/10.1016/j.cattod.2020.02.033
- Statistically Optimum HKUST-1 Synthesized by Room Temperature Coordination Modulation Method for the Adsorption of Crystal Violet Dye vol.26, pp.21, 2021, https://doi.org/10.3390/molecules26216430