DOI QR코드

DOI QR Code

Facile Syntheses of Metal-organic Framework Cu3(BTC)2(H2O)3 under Ultrasound

  • Published : 2009.12.20

Abstract

Cu-BTC[$Cu_3(BTC)_2(H_2O)_3$, BTC = 1,3,5-benzenetricarboxylate], one of the most well-known metal-organic framework materials (MOF), has been synthesized under atmospheric pressure and room temperature by using ultrasound. The Cu-BTC can be obtained in 1 min in the presence of DMF (N,N-dimethylformamide), suggesting the possibility of continuous production of Cu-BTC. Moreover, the surface area and pore volume show that the concentration of DMF is important for the synthesis of Cu-BTC having high porosity. The morphology and phase also depend on the concentration of DMF : Cu-BTC cannot be obtained at room temperature in the absence of DMF and aggregated Cu-BTC (with low surface area) is produced in the presence of high concentration of DMF. It seems that the deprotonation of benzenetricarboxylic acid by base (such as DMF) is inevitable for the room temperature syntheses.

Keywords

References

  1. Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Nature 2003, 423 , 705 https://doi.org/10.1038/nature01650
  2. Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F. Acc. Chem. Res. 2005, 38, 217 https://doi.org/10.1021/ar040163i
  3. Kitagawa, S.; Kitaura, R.; Noro, S.-I. Angew. Chem. Int. Ed. 2004, 43, 2334 https://doi.org/10.1002/anie.200300610
  4. Ferey, G. Chem. Soc. Rev. 2008, 37, 191 https://doi.org/10.1039/b618320b
  5. Ferey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surble, S.; Mirgiolaki, I. Science 2005, 309, 2040 https://doi.org/10.1126/science.1116275
  6. Kickelbick, G. Angew. Chem. Int. Ed. 2004, 43, 3102 https://doi.org/10.1002/anie.200301751
  7. Nicole, L.; Boissiere, C.; Grosso, D.; Quach, A.; Sanchez, C. J. Mater. Chem. 2005, 15, 3598 https://doi.org/10.1039/b506072a
  8. Biradha, K.; Fujita, M. Angew. Chem. Int. Ed. 2002, 41, 3392 https://doi.org/10.1002/1521-3773(20020916)41:18<3392::AID-ANIE3392>3.0.CO;2-V
  9. Zhao, X.; Xiao, B.; Fletcher, A.; Thomas, K. M.; Bradshaw, D.; Rosseinsky, M. J. Science 2004, 306, 1012 https://doi.org/10.1126/science.1101982
  10. Dinca, M.; Long, J. R. J. Am. Chem. Soc. 2005, 127, 9376 https://doi.org/10.1021/ja0523082
  11. Rowsell, J. L. C.; Spencer, E. C.; Eckert, J.; Howard, J. A. K.; Yaghi, O. M. Science 2005, 309,1350 https://doi.org/10.1126/science.1113247
  12. Murray, L. J.; Dinca, M.; Long, J. R. Chem. Soc. Rev. 2009, 38, 1294 https://doi.org/10.1039/b802256a
  13. Wu, C.-D.; Hu, A.; Zhang, L.; Lin, W. J. Am. Chem. Soc. 2005, 127, 8940 https://doi.org/10.1021/ja052431t
  14. Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K. Nature 2000, 404, 982 https://doi.org/10.1038/35010088
  15. Qiu, L.-G.; Xie, A.-J.; Zhang, L.-D. Adv. Mater. 2005, 17, 689 https://doi.org/10.1002/adma.200400663
  16. Forster, P. M.; Cheetham, A. K. Top. Catal. 2003, 24, 79 https://doi.org/10.1023/B:TOCA.0000003079.39312.99
  17. Ma, L.; Abney, C.; Lin, W. Chem. Soc. Rev. 2009, 38, 1248 https://doi.org/10.1039/b807083k
  18. Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. Rev. 2009 38, 1450 https://doi.org/10.1039/b807080f
  19. Kitaura, R.; Seki, K.; Akiyama, G.; Kitagawa, S. Angew. Chem. Int. Ed. 2003, 42, 428 https://doi.org/10.1002/anie.200390130
  20. Won, I.; Seo, J. S.; Kim, J. H.; Kim, H. S.; Kang, Y. S.; Kim, S.-J.; Kim, Y.; Jegal, J. Adv. Mater. 2005, 17, 80 https://doi.org/10.1002/adma.200400447
  21. Li, J.-R.; Kuppler, R. J.; Zhou, H.-C. Chem. Soc. Rev. 2009, 38, 1477 https://doi.org/10.1039/b802426j
  22. Alaerts, L.; Kirschhock, C. E. A.; Maes, M.; van der Veen, M. A.; Finsy, V.; Depla, A.; Martens, J. A.; Baron, G. V.; Jacobs, P. A.; Denayer, J. F. M.; De Vos, D. E. Angew. Chem. Int. Ed. 2007, 46, 4293 https://doi.org/10.1002/anie.200700056
  23. Finsy, V.; Verelst, H.; Alaerts, L.; De Vos, D. E.; Jacobs, P. A.; Baron, G. V.; Denayer, J. F. M. J. Am. Chem. Soc. 2008, 130, 7110 https://doi.org/10.1021/ja800686c
  24. Alaerts, L.; Maes, M.; Giebeler, L.; Jacobs, P. A.; Martens, J. A.; Denayer, J. F. M.; Kirschhock, C. E. A.; De Vos, D. E. J. Am. Chem. Soc. 2008, 130, 14170 https://doi.org/10.1021/ja802761z
  25. Moon, H. R.; Kim, J. H.; Suh, M. P. Angew. Chem. Int. Ed. 2005, 44, 1261 https://doi.org/10.1002/anie.200461408
  26. Hermes, S.; Schroder, F.; Chelmowski, R.; Woll, C.; Fischer, R. A. J. Am. Chem. Soc. 2005, 127, 13744 https://doi.org/10.1021/ja053523l
  27. Horcajada, P.; Serre, C.; Vallet-Regi, M.; Sebban, M.; Taulelle, F.; Ferey, G. Angew. Chem. Int. Ed. 2006, 45, 5974 https://doi.org/10.1002/anie.200601878
  28. Horcajada, P.; Serre, C.; Maurin, G.; Ramsahye, N. A.; Balas, F.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Ferey, G. J. Am. Chem. Soc. 2008, 130, 6774 https://doi.org/10.1021/ja710973k
  29. Chui, S. S.-Y.; Lo, S. M.-F.; Charmant, J. P. H.; Orpen, A. G.; Williams, I. D. Science 1999, 283,1148 https://doi.org/10.1126/science.283.5405.1148
  30. Seo, Y.-K.; Hundal, G.; Jang, I. T.; Hwang, Y. K.; Jun, C.-H.; Chang, J.-S. Micropor. Mesopor. Mater. 2009, 119, 331 https://doi.org/10.1016/j.micromeso.2008.10.035
  31. Li, Z.-Q.; Qiu, L.-G.; Xu, T.; Wu, Y.; Wang, W.; Wu, Z.-Y.; Jiang, X. Mater. Lett. 2009, 63, 78 https://doi.org/10.1016/j.matlet.2008.09.010
  32. Biemmi, E.; Scherb, C.; Bein, T. J. Am. Chem. Soc. 2007, 129, 8054 https://doi.org/10.1021/ja0701208
  33. Krawiec, P.; Kramer, M.; Sabo, M.; Kunschke, R.; Frode, H.; Kaskel, S. Adv. Eng. Mater. 2006, 8, 293 https://doi.org/10.1002/adem.200500223
  34. Park, S.-E.; Chang, J.-S.; Hwang, Y. K.; Kim, D. S.; Jhung, S. H.; Hwang, J.-S. Catal. Survey Asia 2004, 8, 91 https://doi.org/10.1023/B:CATS.0000026990.25778.a8
  35. Tompsett, G. A.; Conner, W. C.; Yngvesson, K. S. Chem. Phys. Chem. 2006, 7, 296 https://doi.org/10.1002/cphc.200500449
  36. (a) Xu, X.; Yang, W.; Liu, J.; Lin, L. Adv. Mater. 2000, 12,195.(Please refer to the other references for details:no.56) https://doi.org/10.1002/(SICI)1521-4095(200002)12:3<195::AID-ADMA195>3.0.CO;2-E
  37. Jhung, S. H.; Lee, J. H.; Chang, J.-S. Micropor. Mesopor. Mater. 2008, 112, 178 https://doi.org/10.1016/j.micromeso.2007.09.039
  38. Hwang, Y. K.; Chang, J.-S.; Park, S.-E.; Kim, D. S.; Kwon, Y.-U.; Jhung, S. H.; Hwang, J.-S.; Park, M.-S. Angew. Chem. Int. Ed. 2005, 44, 557
  39. Jhung, S. H.; Yoon, J. W.; Hwang, Y. K.; Chang, J.-S. Micropor. Mesopor. Mater. 2006, 89, 9 https://doi.org/10.1016/j.micromeso.2005.10.001
  40. Jhung, S. H.; Lee, J.-H.; Chang, J.-S. Bull. Kor. Chem. Soc. 2005, 26, 880 https://doi.org/10.5012/bkcs.2005.26.6.880
  41. Jhung, S. H.; Lee, J.-H.; Forster, P. M.; Férey, G.; Cheetham, A. K.; Chang, J.-S. Chem. Eur. J. 2006, 12, 7899 https://doi.org/10.1002/chem.200600270
  42. Jhung, S. H.; Lee, J.-H.; Yoon, J. W.; Serre, C.; Ferey, G.; Chang, J.-S. Adv. Mater. 2007, 19, 121 https://doi.org/10.1002/adma.200601604
  43. Choi, J. Y.; Kim, J.; Jhung, S. H.; Kim, H.-K.; Chang, J.-S.; Chae, H. K. Bull. Kor. Chem. Soc. 2006, 27, 1523.(Please refer to the other references for details:no.57) https://doi.org/10.5012/bkcs.2006.27.10.1523
  44. Choi, J.-S.; Son, W.-J.; Kim, J.; Ahn, W.-S. Micropor. Mesopor. Mater. 2008, 116, 727 https://doi.org/10.1016/j.micromeso.2008.04.033
  45. Gedanken, A. Ultrasonics Sonochem. 2004, 11, 47 https://doi.org/10.1016/j.ultsonch.2004.01.037
  46. Lee, J. S.; Ha, K.; Lee, Y.-J.; Yoon, B. K. Adv. Mater. 2005, 17, 837 https://doi.org/10.1002/adma.200401457
  47. Jung, S.-H.; Oh, E.; Lee, K.-H.; Park, W.; Jeong, S.-H. Adv. Mater. 2007, 19, 749 https://doi.org/10.1002/adma.200601859
  48. (a) Son, W.-J.; Kim, J.; Kim, J.; Ahn, W.-S. Chem. Commun. 2008, 6336(Please refer to the other references for details:no.58) https://doi.org/10.1039/b814740j
  49. Renzo, F. D. Catal. Today 1998, 41, 37 https://doi.org/10.1016/S0920-5861(98)00036-4
  50. Lethbridge, Z. A. D.; Williams, J. J.; Walton, R. I.; Evans, K. E.; Smith, C. W. Micropor. Mesopor. Mater. 2005, 79, 339 https://doi.org/10.1016/j.micromeso.2004.12.022
  51. Drews, T. O.; Tsapatsis, M. Current Opinion Colloid Interface Sci. 2005, 10, 233 https://doi.org/10.1016/j.cocis.2005.09.013
  52. Qiu, S.; Yu, J.; Zhu, G.; Terasaki, O.; Nozue, Y.; Pang, W.; Xu, R. Micropor. Mesopor. Mater. 1998, 21, 245 https://doi.org/10.1016/S1387-1811(98)00048-1
  53. Jhung, S. H.; Yoon, J. W.; Hwang, J.-S.; Jin, -S.; Cheetham, A. K.; Chang, J.-S. Chem. Mater. 2005, 17, 4455 https://doi.org/10.1021/cm047708n
  54. Didenko, Y. T.; Suslick, K. S. Nature 2002, 418, 394 https://doi.org/10.1038/nature00895
  55. Haque, E.; Khan, N. A.; Lee, J. E.; Jhung, S. H. Chem. Eur. J. 2009, 15, 11730 https://doi.org/10.1002/chem.200902036
  56. (b) Kang, K.-K.; Park, C.-H.; Ahn, W.-S. Catal. Lett. 1999, 59, 45. https://doi.org/10.1023/A:1019004101326
  57. (b) Ni, Z.; Masel, R. I. J. Am. Chem. Soc. 2006, 128, 12394. https://doi.org/10.1021/ja0635231

Cited by

  1. Accelerated Syntheses of Porous Isostructural Lanthanide-Benzenetricarboxylates (Ln-BTC) Under Ultrasound at Room Temperature vol.2010, pp.31, 2010, https://doi.org/10.1002/ejic.201000541
  2. Facile synthesis of cuprous oxide using ultrasound, microwave and electric heating: effect of heating methods on synthesis kinetics, morphology and yield vol.13, pp.12, 2011, https://doi.org/10.1039/c0ce00920b
  3. Interfacial synthesis of hollow metal–organic framework capsules demonstrating selective permeability vol.3, pp.5, 2011, https://doi.org/10.1038/nchem.1026
  4. Inclusion of potassium 4,4′-biphenyldicarboxylate into β-cyclodextrin: the design and synthesis of an organic secondary building unit vol.35, pp.6, 2011, https://doi.org/10.1039/c0nj00796j
  5. Microwave-Assisted Synthesis of Metal–Organic Frameworks vol.40, pp.2, 2011, https://doi.org/10.1039/C0DT00708K
  6. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites vol.112, pp.2, 2012, https://doi.org/10.1021/cr200304e
  7. Recovery and reuse of heteropolyacid catalyst in liquid reaction medium through reversible encapsulation in Cu3(BTC)2 metal–organic framework vol.3, pp.6, 2012, https://doi.org/10.1039/c2sc01102f
  8. Room Temperature Synthesis and Size Control of HKUST-1 vol.95, pp.11, 2012, https://doi.org/10.1002/hlca.201200466
  9. Hetero-metal hydroxide nanostrand assisted synthesis of MIL-110 nanorod arrays on porous substrate vol.15, pp.28, 2013, https://doi.org/10.1039/c3ce40696b
  10. Additive-mediated size control of MOF nanoparticles vol.15, pp.45, 2013, https://doi.org/10.1039/c3ce41152d
  11. High-rate synthesis of Cu–BTC metal–organic frameworks vol.49, pp.98, 2013, https://doi.org/10.1039/c3cc46049e
  12. Esterification Reaction Utilizing Sense of Smell and Eyesight for Conversion and Catalyst Recovery Monitoring vol.91, pp.6, 2014, https://doi.org/10.1021/ed400356j
  13. capture vol.29, pp.9, 2015, https://doi.org/10.1002/aoc.3339
  14. Oxidation of amaranth dye by persulfate and peroxymonosulfate activated by ferrocene vol.92, pp.1, 2017, https://doi.org/10.1002/jctb.4986
  15. Hierarchical porous carbon materials prepared by direct carbonization of Al-PCP as a Pt-catalyst support for the oxygen reduction reaction vol.41, pp.15, 2017, https://doi.org/10.1039/C7NJ00655A
  16. New synthetic routes towards MOF production at scale vol.46, pp.11, 2017, https://doi.org/10.1039/C7CS00109F
  17. Recent advances in controlled modification of the size and morphology of metal-organic frameworks vol.11, pp.9, 2018, https://doi.org/10.1007/s12274-018-2039-3
  18. Realising the environmental benefits of metal–organic frameworks: recent advances in microwave synthesis vol.6, pp.25, 2018, https://doi.org/10.1039/C8TA02919A
  19. Rapid syntheses of a metal–organic framework material Cu3(BTC)2(H2O)3 under microwave: a quantitative analysis of accelerated syntheses vol.12, pp.11, 2010, https://doi.org/10.1039/b921558a
  20. Dense coating of surface mounted CuBTC Metal-Organic Framework nanostructures on silk fibers, prepared by layer-by-layer method under ultrasound irradiation with antibacterial activity vol.19, pp.4, 2012, https://doi.org/10.1016/j.ultsonch.2011.11.016
  21. Rapid solvothermal synthesis of an isoreticular metal-organic framework with permanent porosity for hydrogen storage vol.153, pp.None, 2012, https://doi.org/10.1016/j.micromeso.2011.12.036
  22. Scalable Room‐Temperature Conversion of Copper(II) Hydroxide into HKUST‐1 (Cu3(btc)2) vol.25, pp.7, 2009, https://doi.org/10.1002/adma.201203664
  23. 리뷰: MOF의 구조, 합성 및 응용 vol.17, pp.4, 2014, https://doi.org/10.9766/kimst.2014.17.4.510
  24. Facile Conversion of Hydroxy Double Salts to Metal–Organic Frameworks Using Metal Oxide Particles and Atomic Layer Deposition Thin-Film Templates vol.137, pp.43, 2009, https://doi.org/10.1021/jacs.5b08752
  25. Particle size studies to reveal crystallization mechanisms of the metal organic framework HKUST-1 during sonochemical synthesis vol.34, pp.None, 2009, https://doi.org/10.1016/j.ultsonch.2016.06.011
  26. Multi-metal citrate complex: green synthesis using Lime juice for hydrogen storage applications vol.9, pp.2, 2009, https://doi.org/10.22376/ijpbs.2018.9.2.b190-198
  27. Rapid, Selective, Ambient Growth and Optimization of Copper Benzene-1,3,5-Tricarboxylate (Cu-BTC) Metal-Organic Framework Thin Films on a Conductive Metal Oxide vol.18, pp.5, 2018, https://doi.org/10.1021/acs.cgd.8b00016
  28. High energy laser assisted synthesis of non-crystalline ultrahigh surface area-porous 2D-Zn++-coordinated polymeric dodeca-chloro-corenene flakes aMOFs for CH4/CO2 cap vol.93, pp.None, 2009, https://doi.org/10.1016/j.inoche.2018.05.016
  29. Structure, characterization, and catalytic properties of open-metal sites in metal organic frameworks vol.4, pp.2, 2009, https://doi.org/10.1039/c8re00228b
  30. Synthesis of newly wings like structure non-crystalline Ni++-1,3,5-tribenzyl-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione coordinated MOFs for CO2-Capture vol.1177, pp.None, 2009, https://doi.org/10.1016/j.molstruc.2018.09.069
  31. Preparation and characterization of metal-organic frameworks and their composite Eu2O3@[Zn2(bdc)2dabco] (ZBDh) via pulsed laser ablation in a flowing liquid vol.22, pp.18, 2020, https://doi.org/10.1039/d0ce00038h
  32. Sonocrystallization: Monitoring and controlling crystallization using ultrasound vol.226, pp.None, 2009, https://doi.org/10.1016/j.ces.2020.115911
  33. Synthesis of a metal-organic framework by plasma in liquid to increase reduced metal ions and enhance water stability vol.11, pp.37, 2009, https://doi.org/10.1039/d1ra00942g
  34. The role of embedded 2-ABT@Cu-BTC MOF on the anti-corrosion performance of electro-assisted deposited silica sol-gel composite film vol.267, pp.None, 2021, https://doi.org/10.1016/j.matchemphys.2021.124590
  35. Preparation of MOFs and MOFs derived materials and their catalytic application in air pollution: A review vol.375, pp.None, 2009, https://doi.org/10.1016/j.cattod.2020.02.033
  36. Statistically Optimum HKUST-1 Synthesized by Room Temperature Coordination Modulation Method for the Adsorption of Crystal Violet Dye vol.26, pp.21, 2021, https://doi.org/10.3390/molecules26216430