DOI QR코드

DOI QR Code

Development of Semicontinuous Measurement System of Ionic Species in PM2.5

  • Hong, Sang-Bum (Advanced Environmental Monitoring Research Center (ADERC), Department of Environmental Science and Engineering,Gwangju Institute of Science and Technology (GIST)) ;
  • Chang, Won-il (Advanced Environmental Monitoring Research Center (ADERC), Department of Environmental Science and Engineering,Gwangju Institute of Science and Technology (GIST)) ;
  • Kang, Chang-Hee (Department of Chemistry and Research Institute for Basic Sciences, Cheju National University) ;
  • Lee, Jai H. (Advanced Environmental Monitoring Research Center (ADERC), Department of Environmental Science and Engineering,Gwangju Institute of Science and Technology (GIST))
  • Published : 2009.07.20

Abstract

A new method to semicontinuously determine $PM_{2.5}$ ionic species with a short time resolution is described in detail. In this system, a particle collection section (mixing part, particle collection chamber, and air/liquid separator) was developed. A Y-type connector was used to mix steam and an air sample. The particle collection chamber was constructed in the form of a helix coil and was cooled by a water circulation system. Particle size growth occurred due to the high relative humidity and water absorbed particles were efficiently collected in it. Liquid samples were drained out with a short residence time (0.08-0.1 s). The air/liquid separator was also newly designed to operate efficiently when the flow rate of the air sample was 16.7 L $min^{-1}$. For better performance, the system was optimized for particle collection efficiency with various types of test aerosols such as ($NH_4)_2SO_4,\;NaCl,\;NH_4HSO_4,\;and\;NH_4NO_3$. The particle collection efficiencies were almost 100% at different concentration levels in the range over 500 nm in diameter but 50-90% in the range of 50-500 nm under the following experimental conditions: 15 coil turns, a water flow rate for steam generation of 0.65 mL $min^{-1}$, and an air sample flow rate of 16.7 L $min^{-1}$. Finally, for atmospheric applications, chemical compositions of $PM_{2.5}$ were determined with a time resolution of 20 min on January 11-24, 2006 in Seoul, Korea, and the chemical characteristics of $PM_{2.5}$ ions were investigated.

Keywords

References

  1. Charlson, R. J.; Schwartz, S. E.; Hales, J. M.; Cess, R. D.; Coakley, J. A.; Hansen, Jr., J. E.; Hofmann, D. J. Science 1992, 255, 423 https://doi.org/10.1126/science.255.5043.423
  2. Cass, G. R. Atmospheric Environment 1979, 13, 1069 https://doi.org/10.1016/0004-6981(79)90031-3
  3. Jacob, D. J. Atmospheric Environment 2000, 34, 2131 https://doi.org/10.1016/S1352-2310(99)00462-8
  4. Dockey, D. W.; Pope, C. A. Annu. Rev. Public Health 1994, 15, 107 https://doi.org/10.1146/annurev.pu.15.050194.000543
  5. Albrecht, B. A. Science 1989, 245, 1227 https://doi.org/10.1126/science.245.4923.1227
  6. Fowler, D.; Cape, J. N.; Sutton, M. A.; Mourne, R.; Hargreaves, K. J.; Duyzer, J. H.; Gallagher, M. W. In Acidification Research: Evaluation and Policy applications; Proc. Int: Conf, 1992; p 553
  7. On Res. Priorities for airborne particulate matter; National Research Council (NRC): Washington, D. C., 1998
  8. Slanina, J.; ten Brink, H. M.; Otjes, R. P.; Even, A.; Jongejan, P.; Khlystov, A.; Waijers-Ijpelaan, A.; Hu, M.; Lu, Y. Atmospheric Environment 2001, 35, 2319 https://doi.org/10.1016/S1352-2310(00)00556-2
  9. Chow, J. C. Journal of Air and Waste Management 1995, 45, 320 https://doi.org/10.1080/10473289.1995.10467369
  10. Buhr, S.; Buhr, M. P.; Fehsenfeld, F. C.; Holloway, J. S.; Karst, U.; Norton, R. B.; Parrish, D. D.; Sievers, R. E. Atmospheric Environment 1995, 29(1), 2609 https://doi.org/10.1016/1352-2310(95)00171-T
  11. Khlystov, A.; Wyers, G. P.; Slanina, J. Atmospheric Environment 1995, 29, 2229 https://doi.org/10.1016/1352-2310(95)00180-7
  12. Simon, P. K.; Dasgupta, P. K. Analytical Chemistry 1995, 67, 71
  13. Liu, S.; Dasgupta, P. K. Analytical Chemistry 1996, 68, 3638 https://doi.org/10.1021/ac960340w
  14. Weber, R.; Orsini, D.; Daun, Y.; Lee, Y. N.; Klotz, P. J.; Brechtel, F. Aerosol Science and Technology 2001, 35, 718 https://doi.org/10.1080/02786820152546761
  15. Boring, C. B.; Al-Horr, R.; Genfa, Z.; Dasgupta, P. K.; Martin, M. W.; Smith, W. F. Analytical Chemistry 2002, 74, 1256 https://doi.org/10.1021/ac015643r
  16. Al-Horr, R.; Samanta, G.; Dasgupta, P. K. Environmental Science and Technology 2003, 37, 5711 https://doi.org/10.1021/es034464j
  17. Hinds, W. C. Aerosol Technology: Properties, Behaviors, and Measurement of Airborne Particles; John Wiley & Sons: 1982; p 214
  18. Seinfeld, J.; Pandis, S. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; Wiley-interscience: New York, 1998; p 355
  19. Orsini, D. A.; Ma, Y.; Sullivan, A.; Sierau, B.; Baumann, K.; Weber, R. J. Atmospheric Environment 2003, 37, 1243 https://doi.org/10.1016/S1352-2310(02)01015-4
  20. Maxwell-Meier, A.; Weber, R.; Song, C.; Orisi, D.; Ma, Y.; Camichael, G. R.; Streets, D. G. Journal of Geophysical Research 2004, 109, D19S07 https://doi.org/10.1029/2003JD004464
  21. URG operation manual; Use and Maintenance of URG Annular Denuders 2000, 25
  22. Park, S. S.; Hong, S. B.; Jung, Y. G.; Lee, J. H. Atmospheric Environment 2004, 38, 293 https://doi.org/10.1016/j.atmosenv.2003.09.041
  23. Lee, J. H.; Y. Chen, I.; Tang, N. Environmental Science and Technology 1991, 25, 339 https://doi.org/10.1021/es00014a019
  24. Kim, Y. P.; Seinfeld, J. H.; Saxena, P. Aerosol Science and Technology 1993a, 19, 157 https://doi.org/10.1080/02786829308959628
  25. Kim, Y. P.; Seinfeld, J. H.; Saxena, P. Aerosol Science and Technology 1993b, 19, 182 https://doi.org/10.1080/02786829308959629
  26. Kim, D. S.; Lee, D. S.; Woo, C. G.; Choi, M. Journal of Aerosol Science 2006, 37, 1876 https://doi.org/10.1016/j.jaerosci.2006.08.003
  27. Kim, D. S.; Kang, C. H.; Hong, S. B.; Lee, K. W.; Lee, J. H. Journal of Korean Society for Atmospheric Environment 2008, 24(E1), 24
  28. Skoog, D. A.; West, D. M.; James Holler, F.; Crouch, S. R. Analytical Chemistry: An introduction; Brooks/Cole: 2000; p 140
  29. Hinds, W. C. Aerosol Technology: Properties, Behaviors, and Measurement of Airborne Particles; John Wiley & Sons: 1982; p 24
  30. Chun, Y. S.; Kim, J. Y.; Choi, J. C.; Boo, K. O.; Oh, S. N.; Lee, M. H. Atmospheric Environment 2001, 35, 2715 https://doi.org/10.1016/S1352-2310(00)00404-0
  31. Bae, G. N.; Kim, M. C.; Lim, D. Y.; Moon, K. J.; Baik, N. J. Journal of Korean Society for Atmospheric Environment 2003, 19(2), 167
  32. Song, C. H.; Carmichael, G. R. Atmospheric Environment 1999, 33, 2203 https://doi.org/10.1016/S1352-2310(98)00301-X
  33. Song, C. H.; Carmichael, G. R. Journal of Geophysical Research 2001, 106, 18131 https://doi.org/10.1029/2000JD900352
  34. Hong, S. B.; Kim, D. S.; Ryu, S. Y.; Kim, Y. J.; Lee, J. H. Atmospheric Research 2008, 89, 62 https://doi.org/10.1016/j.atmosres.2007.12.001

Cited by

  1. 제주도 해안과 산간 지역 대기 에어러솔의 이온조성 비교 vol.24, pp.1, 2009, https://doi.org/10.5806/ast.2011.24.1.024