DOI QR코드

DOI QR Code

Chemical Derivatization of Catecholamines for Gas Chromatography-Mass Spectrometry

  • Published : 2009.07.20

Abstract

GC/MS analysis of catecholamines (CAs) in biological sample may produce poor reproducible quantitaion when chemical derivatization is used as the technique to form a volatile derivative. Significant quantities of the side products can be formed from CAs with primary amine during the derivatization reaction under un-optimized conditions. We have tested various chemical derivatization techniques in an attempt to find an optimum derivatization method that will reduce side product formation, enable to separate several catecholamine derivatives in GC chromatogram, and obtain significant improvement of detection sensitivity in GC/MS analysis. Whereas several derivatization techniques such as trimethylsilylation (TMS), trifluoroacylation (TFA), and two step derivatization methods were active, selective derivatization to form O-TMS, N-heptafluorobutylacyl (HFBA) derivative using N-methyl-N-(trimethylsilyl)-trifluoroacetamide (MSTFA) and N-methyl-bis(heptafluorobutyramide) (MBHFBA) reagents was found to be the most effective method. Moreover, this derivative formed by selective derivatization could provide sufficient sensitivity and peak separation as well as produce higher mass ion as base peak to use selected ion in SIM mode. Calibration curves based on the use of an isotopically labeled internal standard show good linearity over the range assayed, 1 ~ 5000 ng/mL, with correlation coefficients of > 0.996. The detection limits of the method ranged from 0.2 to 5.0 ppb for the different CAs studied. The developed method will be applied to the analysis of various CAs in biological sample, combined with appropriate sample pretreatment.

Keywords

References

  1. Eisenhofer, G. Clin. Chem. 2001, 47, 988
  2. Gram, P. E.; Smythe, G. A.; Edwards, G. A.; Lazarus, L. Ann. Clin. Biochem. 1993, 30, 129 https://doi.org/10.1177/000456329303000203
  3. Taylor, R. L.; Singh, R. J. Clin. Chem. 2002, 48, 533
  4. Lagerstedt, S. A.; O'Kane, D. J.; Singh, R. L. Clin. Chem. 2004, 50, 603 https://doi.org/10.1373/clinchem.2003.024703
  5. Andrew, R.; Watson, D. G.; Best, S. A.; Midgley, J. M.; Wenlong, H.; Petty, T. K. H. Neurochem. Res. 1993, 18, 1175 https://doi.org/10.1007/BF00978370
  6. Vuorensola, K.; Siren, H.; Karjalainen, U. J. Chromatogr. B 2003, 788, 277 https://doi.org/10.1016/S1570-0232(02)01037-1
  7. Monsaingeon, M.; Simonnet, G.; Corcuff, J.-B. Eur. J. Pediatr. 2003, 162, 397
  8. Lionetto, L.; Lostia, A. M.; Stigliano, A.; Cardelli, P.; Simmaco, M. Clin. Chim. Acta 2008, 398, 53 https://doi.org/10.1016/j.cca.2008.08.003
  9. De Jong, W. H. A.; Graham, K. S.; Van Der Mollen, J. C.; Links, T. P.; Morris, M. R.; Ross, H. A.; De Vries, E. G. E.; Kema, I. P. Clin. Chem. 2007, 53, 1684 https://doi.org/10.1373/clinchem.2007.087114
  10. Gu, Q.; Shi, X.; Yin, P.; Gao, P.; Lu, X.; Xu, G. Anal. Chim. Acta 2008, 609, 192 https://doi.org/10.1016/j.aca.2008.01.017
  11. Lagerstedt, S.; O'Kane, D. J.; Singh, R. J. Clin. Chem. 2004, 50, 603 https://doi.org/10.1373/clinchem.2003.024703
  12. Crockett, D. K.; Frank, E. L.; Roberts, W. L. Clin. Chem. 2002, 48, 332
  13. Bergquist, J.; Sciubisz, A.; Kaczor, A.; Silberring, J. J. Neurosci. Methods 2002, 113, 1 https://doi.org/10.1016/S0165-0270(01)00502-7
  14. Fauler, G.; Leis, H. J.; Huber, E.; Schellauf, C.; Kerbi, R.; Urban, C.; Gleispach, H. J. Mass Spectrom. 1997, 32, 507 https://doi.org/10.1002/(SICI)1096-9888(199705)32:5<507::AID-JMS503>3.0.CO;2-9
  15. Lhuguenot, J. C.; Maume, B. F. Biomed. Mass Spectrom. 1980, 7, 529 https://doi.org/10.1002/bms.1200071115
  16. Muskiet, A. J.; Jeuring, H. J.; Nager, G. T.; Druyn, H. W.; Wolthers, B. G. Clin. Chem. 1978, 24, 1899
  17. Kuhlenbeck, D. L.; O'Neill, T. P.; Mack, C. E.; Hoke ll, S. H.; Wehmeyer, K. R. J. Chromatogr. B 2003, 738, 319
  18. Lho, D. S.; Hong, J. K.; Paek, H. K.; Lee, J. A.; Park, J. J. Anal. Toxicol. 1990, 14, 77 https://doi.org/10.1093/jat/14.2.77
  19. Shin, H.-S.; Donike, M. Anal. Chem. 1996, 68, 3015 https://doi.org/10.1021/ac960365v
  20. Ahn, Y. G.; Kim, H. Y.; Shin, J. H.; Khim, J.; Lee, M. K.; Hong, J. Anal. Chim. Acta 2007, 603, 67 https://doi.org/10.1016/j.aca.2007.09.045
  21. Knapp, D. R. Handbook of Analytical Derivatization Reactions; John Wiley & Sons: New York, 1979

Cited by

  1. Chemical derivatization and biofunctionalization of hydrogel nanomembranes for potential biomedical and biosensor applications vol.18, pp.17, 2016, https://doi.org/10.1039/C5CP07840G
  2. Determination of monoamine neurotransmitters in zebrafish (Danio rerio) by gas chromatography coupled to mass spectrometry with a two-step derivatization vol.409, pp.11, 2017, https://doi.org/10.1007/s00216-017-0239-4
  3. Current literature in mass spectrometry vol.45, pp.1, 2010, https://doi.org/10.1002/jms.1643
  4. Profiling analysis of biogenic amines and their acidic metabolites in mouse brain tissue using gas chromatography-tandem mass spectrometry vol.940, pp.None, 2009, https://doi.org/10.1016/j.jchromb.2013.09.026
  5. Differential effects of chronic voluntary wheel-running on morphine induced brain stimulation reward, motor activity and striatal dopaminergic activity vol.394, pp.None, 2020, https://doi.org/10.1016/j.bbr.2020.112831