과제정보
연구 과제 주관 기관 : Pusan National University
본 논문은 호주 금융시장의 두 가지 시계열(ASX200 주가지수와 AUD/USD 환율)의 수익률 자료에 존재할 수 있는 장기기억 변동성 특성을 모형화하는 데 skewed Student-t 분포가 유용한지를 연구한다. 이러한 연구목적을 위하여 FIGARCH 및 FIAPARCH Value-at-Risk (VaR) 모형을 교란항에 대한 정규분포, Student-t 분포 및 치우친 Student-t 분포 가정하에서 평가한다. 실증분석 결과 skewed Student-t 분포 모형이 정규분포 모형이나 Student-t 분포 모형보다 호주 금융시장의 VaR을 더 정확하게 추정한다는 발견하였다. 따라서 자산 수익률 분포의 왜도 및 첨도를 고려하는 것은 호주 주식시장과 외환시장의 장기기억 변동성 모형을 검토할 때 적절한 모형선택 기준을 제공한다는 것을 알 수 있다.
This article investigates the usefulness of the skewed Student-t distribution in modeling the long memory volatility property that might be present in the daily returns of two Australian financial series; the ASX200 stock index and AUD/USD exchange rate. For this purpose we assess the performance of FIGARCH and FIAPARCH Value-at-Risk (VaR) models based on the normal, Student-t, and skewed Student-t distribution innovations. Our results support the argument that the skewed Student-t distribution models produce more accurate VaR estimates of Australian financial markets than the normal and Student-t distribution models. Thus, consideration of skewness and excess kurtosis in asset return distributions provides appropriate criteria for model selection in the context of long memory volatility models in Australian stock and foreign exchange markets.
연구 과제 주관 기관 : Pusan National University